Electroreductive Intermolecular Coupling of Uracils with Aromatic Ketones: Synthesis of 6-Substituted and cis-5,6-Disubstituted 5,6-Dihydro-1,3-dimethyluracils and Their Transformation to 6-Substituted 1,3-Dimethyluracils, trans-5,6-Disubstituted 5,6-Dihydro-1,3-dimethyluracils, and 4,5,5-Trisubstituted 3-Methyloxazolizin-2-ones

Naoki Kise,* Yusuke Hamada, and Toshihiko Sakurai

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan

Supporting Information

ABSTRACT: The electroreductive coupling of 1,3-dimethyluracil, thymine, and 5-fluorouracil with aromatic ketones in the presence of TMSCl gave 6-substituted and cis-5,6-disubstituted 5,6-dihydro-1,3dimethyluracils. The dehydrotrimethylsiloxylation of the adducts afforded 6-substituted and 5,6-fused 1,3-dimethyluracils. The detrimethylsilylation of the adducts with TBAF or 1 M HCl-MeOH gave 4,5,5-trisubstituted 3-methyloxazolizin-2-ones or 3-methyloxazolizin-2-imines in addition to simply desilvlated alcohols. The cis-5,6-disubstituted 5,6-dihydro-1,3-dimethyluracils were isomerized to the corresponding trans-isomers by heating in the presence of cat. DMAP. The cis- and trans-5,6-disubstituted 5,6-dihydro-1,3-dimethyl-

uracils were assigned by the coupling constants $J_{5,6}$ of their ¹H NMR spectra.

INTRODUCTION

To date, a number of 5- and 6-substituted uracils have been investigated as pharmacologically and biologically active compounds, since they are analogues of primary nucleic acid bases.^{1,2} Therefore, the selective synthesis of 5- and 6substituted uracils attracts much interest from the synthetic chemists.^{3,4} In this context, we reported the reductive two-toone coupling of benzophenones with 1,3-dimethyluracils by low-valent titanium as the first example of the reductive coupling of uracils with carbonyl compounds (Scheme 1).⁵ In addition, we recently reported the electroreductive one-to-one coupling between aromatic ketones and 1,3-dimethyluracils to give 6substituted 5,6-dihydro-1,3-dimethyluracils and their transformation to 6-substituted 1,3-dimethyluracils (X = H, Me) or 5,6-fused 1,3-dimethyluracils (X = F).⁶ It is noted that *cis*-5,6disubstituted 5,6-dihydro-1,3-dimethyluracils were formed stereoselectively from 1,3-dimethylthymine (X = Me) and 5fluoriuracil (X = F). In this paper, we report our further study on the electroreductive coupling of 1,3-dimethyluracils with aromatic ketones and the dehydrotrimethylsiloxylation of the adducts. Moreover, we found that the adducts can be transformed to 4,5,5-trisubstituted 3-methyloxazolizin-2-ones, 3-methyloxazolizin-2-imines, and trans-5,6-disubstituted 5,6dihydro-1,3-dimethyluracils (Scheme 2). Successive ring-closure and opening of the adducts proceeded by treatment with TBAF in THF or HCl in MeOH to give N-methyl-2-(3-methyl-2-oxoScheme 1. Previous Works: Reductive Coupling of Uracils with Benzophenones

5,5-diaryloxazolidin-4-yl)acetamides (X = H, Me, F) or methyl 3-methyl-2-(methylimino)-5,5-diaryloxazolidin-4-yl)propanoates (X = Me), respectively. Furthermore, cis-5,6disubstituted 5,6-dihydro-1,3-dimethyluracils (X = Me, F) were

Received: March 29, 2016 Published: May 12, 2016

Scheme 2. Transformation of 6-Substituted (X = H) and *cis*-5,6-Disubstituted 5,6-Dihydro-1,3-Dimethyluracils (X = Me, F)

isomerized to the corresponding *trans*-isomers by heating at 150 °C in the presence of cat. DMAP. These results provide a new method for the stereoselective synthesis of *cis*- and *trans*-5,6-disubstituted 5,6-dihydro-1,3-dimethyluracils. The both geometric isomers were readily assigned by the coupling constants $J_{5,6}$ of their ¹H NMR spectra.

RESULTS AND DISCUSSION

Electroreductive Coupling of Uracils with Aromatic Ketones. The electroreduction of 1,3-dimethyluracils 1a-c and benzophenones 2a-g (2 equiv) was carried out in THF in the presence of TMSCl (5 equiv) and TEA (5 equiv) using a Pt cathode to give 6-substituted 1,3-dimethyl-5,6-dihydrouracils 3a-n as the adducts (Table 1).⁶ As the cathode material, Pt, Pb,

^aIsolated yields. ^bReported data in ref 6.

Au, Ag, Cu, Zn, and Sn afforded almost the same yields of 3a (72-77%) in the reaction of **1a** and **2a**. The presence of TMSCl is indispensable for the electroreductive coupling,⁷ since no cross-coupled product was produced by the electroreduction of 1a and 2a in the absence of TMSCl; 1,1,2,2-tetraphenylethane-1,2-diol was obtained as an only product by the pinacol coupling of 2a. On the other hand, the presence of TEA is not crucial for the reductive coupling but brought about steady results. The role of TEA is probably to neutralize hydrogen chloride generated from TMSCl and trace amounts of water remaining in the solvent and reagents. From 1,3-dimethylthymine (1b) and 1.3-dimethyl-5-fluorouracil (1c). cis-5.6-disubstituted 1.3-dimethyl-5,6-dihydrouracils cis-3h-n were produced with complete stereoselectivity (runs 8-14). The stereostructures of *cis*-**3h–n** were determined by X-ray crystallographic and ¹H NMR analyses (vide infra).

The electroreductive coupling of 1a-c with alkyl aryl ketones 4a-e was also effected under the same conditions (Table 2).⁶

^dBoth isomers were *cis*.

All of the products 5a-i were formed as mixtures of two diastereomers. Fortunately, it was confirmed by X-ray crystallographic analysis of the corresponding detrimethylsilylated alcohols as described below that the major isomers of 5e (X = H) and 5h (X = F) were *erythro* and *cis-erythro*, respectively, and the minor isomer of 5g (X = Me) was *cis-threo*. These results suggest that the major isomers of 5d-i formed from cyclic ketones, 1-tetralone (4d) and 1-indanone (4e), were *erythro* (runs 4–9) and the both isomers of 5f-i (X = Me, F) were *cis* (runs 6–9). The *cis*-stereoconfiguration of both isomers of 5f-i was also supported by ¹H NMR analysis (vide infra).

As described in the previous report,⁶ the *cis*-stereoselective formation of 3h-n and 5f-i can be explained by the assumption that the protonation to the 5-position of 6-substituted silyl enol

ethers occurs from the less-hindered side, that is, the opposite side of the 6-substituent predominantly. Next, the presumed reaction mechanism of the electroreductive coupling of 1a with 4d is illustrated in Scheme 3, according to the reported

Scheme 3. Presumed Reaction Mechanism of Electroreductive Coupling of 1a with 4d

mechanism.⁶ Carbanion A is generated by the two-electron transfer to 4d and O-trimethylsilylation, The nucleophilic addition of A proceeds at the 6-position of 1a through transition states TS and subsequent O-silylation produces silyl enol ether B. During workup, the desilylation of the silyl enol ether moiety in B affords 5d. Therefore, we calculated the transition states TS to give *erythro-* and *threo-*5d by the DFT method at the B3LYP/6-311+G(2d,p) level using the IEFPCM model in THF to elucidate the *erythro-*selectivity in the electroreductive coupling of 1a with 4d. As exhibited in Figure 1, two transition

Figure 1. Optimized structures and relative energies of *erythro*-**TS** and *threo*-**TS** calculated at the B3LYP/6-311+G(2d,p) level using the IEFPCM model in THF.

states *erythro*-**TS** and *threo*-**TS** were found and *erythro*-**TS** is lower in energy than *threo*-**TS** (1.42 kcal/mol corresponding to 83:17 dr). The energy difference is probably due to the steric repulsion between the trimethylsiloxy group and 1-methyl group in *threo*-**TS**. Although the calculation results somewhat overestimate the diastereomeric ratio compared to the experimental result (73:27 dr), the *erythro*-selectivity in the formation of 5d is supported by the DFT calculations.

Dehydrotrimethylsiloxylation of the Adducts. The results of the dehydrotrimethylsiloxylation of 3a-n by reflux in a benzenoid solvent in the presence of cat. TsOH are summarized in Table 3. From 3a-j (X = H, Me) except for 3f, the corresponding 6-diarylmethyl-1,3-dimethyluracils 6a-e,g (X = H) and 6h-j (X = Me) were obtained in moderate to high yields (runs 1-5 and 7-10). From 3f, 6-(9-anthracenyl)-5,6-dihydouracil 6f was formed as a product (run 6). However, 5,6-fused 1,3-dimethyluracils <math>7k-n were given by the reactions of *cis*-3k-n (X = F) under the same conditions (runs 11-14).

The results of the dehydrotrimethylsiloxylation of 5a-i are shown in Table 4. From 5a-c derived from acetophenones 4a-c, 6-alkenyl-1,3-dimethyl-5,6-dihydrouracils 8a-c were obtained as the major products together with 6-alkyl-1,3-dimethyluracils 9a-c (runs 1-3). In contrast, the reactions of 5d-i formed from cyclic ketones 4d,e selectively yielded 8d-i (runs 4-9). Dehydrogenation of 8d and *cis*-8f,h with DDQ gave 6-(1-naphthyl)-1,3-dimethyl-5,6-dihydrouracils 10d and *cis*-10f,h, respectively (Scheme 4). The stereoconfiguration of *cis*-8f,h was completely retained in *cis*-10f,h.

Detrimethylsilylation of the Adducts with TBAF. The results of the detrimethylsilylation of 3a-n with TBAF in THF are summarized in Table 5. The reactions were typically performed until almost all of 3a-n were consumed. The treatment of 3a-e (X = H) at 25 °C for 15 min gave 4substituted 5,5-diaryloxazolidin-2-ones 12a-e (runs 1-5), while simply detrimethylsilylated alcohols 11f,g were obtained from $3f_{,g}(X = H)$ under the same conditions (runs 6 and 7). The reaction of *cis*-3h (X = Me) at 25 °C for 15 min afforded almost trans-isomerized 11h and a diastereomeric mixture of 12h in 26% (3:97 dr) and 58% (70:30 dr) yields, respectively (run 8). When the reaction was carried out at 0 °C for 15 min, cis-11h was obtained as the major product (86:14 dr) in 88% yield (run 9). The prolonged reaction time (12 h) at 0 °C brought about considerable isomerization of cis-11h to trans-11h (72%, 31:69 dr) and slight formation of 12h (15%, 80:20 dr) from **11h** (run 10). The desilylation of *cis*-**3**i,j (X = Me) was slower than that of *cis*-3h (runs 11–13). The treatment of *cis*-3i,j at 25 °C for 12 h afforded completely trans-isomerized 11i,j as minor products and diastereomeric mixtures of 12i,j as major products (runs 11 and 13). From cis-3k-n (X = F), 12k-nwere obtained by treatment at 25 °C for 15 min as single stereoisomers (runs 14-17). Since the stereostructure of the obtained 12k-n was determined to be three by X-ray crystallography, the stereoconfiguration of cis-3k-n was completely reflected in *threo*-12k-n.

The results of the detrimethylsilylation of 5d-i with TBAF in THF are shown in Table 6. The treatment of both isomers of 5d, e (X = H) gave the corresponding desilylated alcohols 13d, e (runs 1–4). While *trans*-isomers of *erythro*-13f,g and diastereomeric mixtures of oxazolin-2-ones 14f,g were formed from *ciserythro*-5f,g (runs 5 and 7), only *trans*-isomerized *threo*-13f,g were obtained from *cis-threo*-5f,g (runs 6 and 8). In contrast, the reactions of both isomers of *cis*-5h,i (X = F) afforded 14h,i selectively (runs 9–11). Although the stereostructures of 14i obtained from *cis-erythro*- and *cis-threo*-5i could not be confirmed (runs 10 and 11), they were assumed to be *erythro-threo* and *threo-threo*, respectively, from the completely stereo-selective formation of *threo*-12k-n (runs 14–17 in Table 5).

The presumed reaction mechanism of the transformation of **3** to **12** is shown in Scheme 5. Detrimethylsilylation of **3** with

Table 3. Dehydrotrimethylsiloxylation of 3a-n to 6a-j or 7a-d

		MeN MeN Me 3a-g X = H cis-3h-j > cis-3k-n >	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	$\begin{array}{c} O \\ MeN \\ N \\ Me \\ Ar \end{array}$ $\begin{array}{c} Ar \\ Ar \\ 6a-g \\ K = H \\ 6h-j \\ X = Me \end{array}$	7k Y = H $7k Y = H$ $7l Y = F$ $7m Y = OMe$		
run	3	solvent	time (h)	6	% yield of 6^a	7	% yield of 7^a
1	3a	toluene	12	6a	86 ^b		
2	3b	toluene	12	6b	82 ^b		
3	3c	toluene	1	6c	93 ^b		
4	3d	toluene	12	6d	94 ^b		
5	3e	toluene	12	6e	66		
6	3f	xylene	1	6f ^{c,d}	62		
7	3g	xylene	24	6g	94		
8	cis-3h	toluene	12	6h	83 ^b		
9	cis-3i	toluene	12	6 i	69 ^b		
10	cis-3j	toluene	2	6j	95 ^b		
11	cis-3k	toluene	12			7k	70 ^b
12	cis-31	toluene	12			71	51 ^b
13	cis-3m	toluene	1			7 m	72 ^b
14	cis-3n	benzene	12			7 n	90 ^b
Isolated wield	^b Roported data	in rof 6 ^c Tho stru	cture of 6f is show	m bolow d			

^aIsolated yields. ^bReported data in ref 6. ^cThe structure of **6f** is shown below. ^a

Table 4. Dehydrotrimethylsiloxylation of 5a-i to 8a-i or 9a-c

			$\frac{\rho - \text{TsOF}}{\Lambda}$	H MeN N Me Ph	R' MeN R R" + Ne R Me Ph		
		5a R = Me 5b R = Et 5c R = <i>i</i> -Pi	r	8a R' = R" = H 8b R' = H, R' 8c R' = R" =	H 9a R = Me ' =Me 9b R = Et Me 9c R = <i>i</i> -Pr		
		MeN Ne 5d,e X = H	$\frac{p-T}{n}$ $n = 2, 1$	SOH ∆ MeN N MeN N Me 8d,e X cies8fa	= H		
		<i>cis</i> -5h.i X	= F	<i>cis</i> -8h.i	X = F		
run	5	cis-5h.i X	= F time (h)	<i>cis-</i> 8h.i	X = F % yield (gr) of 8 ^a	9	% yield of 9^a
run 1	5 5a	cis-5h.i X solvent xylene	= F time (h) 12	<i>cis</i> -8h.i 8 8a	X = F % yield (gr) of 8 ^a 81 ^b	9 9a	% yield of 9^a 6^b
run 1 2	5 5a 5b	cis-5h.i X solvent xylene xylene	= F time (h) 12 12	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	X = F % yield (gr) of 8 ^a 81^{b} 50 (70:30) ^b	9 9a 9b	% yield of 9^a 6^b 8^b
run 1 2 3	5 5a 5b 5c	cis-5h.i X solvent xylene xylene xylene	= F time (h) 12 12 72	cis-8h.i 8 8a 8b 8c	X = F % yield (gr) of 8^{a} 81^{b} 50 (70:30) ^b 28^{b}	9 9a 9b 9c	% yield of 9 ^a 6 ^b 8 ^b 11 ^b
run 1 2 3 4	5 5a 5b 5c 5d°	cis-5h.i X solvent xylene xylene xylene xylene xylene	= F time (h) 12 12 72 2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	X = F % yield (gr) of 8^{a} 81^{b} $50 (70:30)^{b}$ 28^{b} 89^{b}	9 9a 9b 9c	% yield of 9 ^a 6 ^b 8 ^b 11 ^b
run 1 2 3 4 5	5 5a 5b 5c 5d ^c 5e ^c	cis-5h.i X solvent xylene xylene xylene xylene toluene	= F time (h) 12 12 72 2 2	sis ong cis-8h.i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		9 9a 9b 9c	% yield of 9 ^{<i>a</i>} 6 ^{<i>b</i>} 8 ^{<i>b</i>} 11 ^{<i>b</i>}
run 1 2 3 4 5 6	5 5a 5b 5c 5d ^c 5e ^c <i>cis</i> -5f ^c	cis-5h.i X solvent xylene xylene xylene toluene toluene	= F time (h) 12 12 72 2 2 12	sis ong cis-8h.i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$X = K^{a}$ % yield (gr) of 8 ^a 81 ^b 50 (70:30) ^b 28 ^b 89 ^b 90 85	9 9a 9b 9c	% yield of 9 ^a 6 ^b 8 ^b 11 ^b
run 1 2 3 4 5 6 7	5 5a 5b 5c 5d ^c 5e ^c <i>cis</i> -5f ^c <i>cis</i> -5g ^c	cis-5h.i X solvent xylene xylene xylene toluene toluene toluene	= F time (h) 12 12 72 2 2 2 12 3	sis sing cis-8h.i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 8 5 8	$X = K^{a}$ % yield (gr) of 8 ^a 81 ^b 50 (70:30) ^b 28 ^b 89 ^b 90 85 73	9 9a 9b 9c	% yield of 9 ^a 6 ^b 8 ^b 11 ^b
run 1 2 3 4 5 6 7 8	5 5a 5b 5c 5d ^c 5e ^c cis-5f ^c cis-5f ^c cis-5g ^c	cis-5h.i X solvent xylene xylene xylene toluene toluene toluene toluene toluene	= F time (h) 12 12 72 2 2 12 3 3	sis sing cis-8h.i 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$X = K^{a}$ % yield (gr) of 8 ^a 81 ^b 50 (70:30) ^b 28 ^b 89 ^b 90 85 73 78	9 9a 9b 9c	% yield of 9 ^{<i>a</i>} 6 ^{<i>b</i>} 8 ^{<i>b</i>} 11 ^{<i>b</i>}

^aIsolated yields. ^bReported data in ref 6. ^cDiastereomeric mixtures obtained in Table 2.

Scheme 4. Dehydration of 8d,f,h to 10d,f,h

TBAF generates O-anion C. Intramolecular nucleophilic addition of the O-anion to the carbonyl group at the 2-position in C forms bicyclo[3.2.1] O-anion D. Ring-opening of the sixmembered ring in D and subsequent protonation of the resultant anion E produce oxazolizin-2-ones 12. When the stereoconfiguration of 3h-n (X = Me, F) is retained, *cis*-isomers of 3h-n are transformed to *erythro*-12h-j (X = Me) and *threo*-12k-n (X = F). The relative energies of E to C (Ar = Ph, X = H, Me, F) calculated by the DFT method at the B3LYP/6-311+G(2d,p) level using the IEFPCM model in THF are summarized in Table 7. These results show that anions Ea,h,k are much lower in energy than anions Ca,h,k and, therefore, suggest the spontaneous transformation from C to E. It seems to be possible that an alternative intramolecular nucleophilic addition of the O-anion to the carbonyl group at the 4-position in Ca and subsequent ring-opening of the resultant Da' gives Ea'. However, Ea' is higher in energy than Ca (3.20 kcal/mol). This result shows that the alternative route from Ca to Ea' is unlikely. Since the transformation of cis-11h-j (X = Me) to ervthro-12h-j is slow compared with those of cis-11a-e (X = H) and *cis*-11k-n (X = F) probably due to steric and electronic effects of the 5-Me group in *cis*-11h-j, the isomerization of *cis*-11h-j to trans-11h-j occurs. Unsurprisingly, trans-Ch (Ar = Ph, X = Me) is much lower in energy (-5.78 kcal/mol) than *cis*- **Ch**, and this result elucidates the straightforward isomerization of *cis*-11h-j and *cis*-13f,g to their *trans*-isomers. The transformation of *trans*-11h-j with TBAF gave *threo*-12h-j as described below.

Detrimethylsilylation of the Adducts with 1 M HCl in **MeOH.** The results of the detrimethylsilylation of 3a-g (X = H) and *cis*-3k-n (X = F) with 1 M HCl in MeOH at 25 or 0 $^{\circ}$ C are summarized in Table 8. The reactions were carried out until almost all of 3 was consumed. Except for 3c and 3f, the corresponding desilvlated alcohols 11a,b,d,e,g,k-n were obtained in good to high yields (runs 1, 2, 5, 6, 8-12). From 3c (Ar = 4-MeOC₆H₄), methyl ether 11c' (23%) was also formed with 11c (63%) by the substitution of 11c with methanol even at 0 °C for 30 min (run 3). Although the desilylation needed prolonged reaction time (6 h), 11c was formed as the sole product (85%) by treatment with 1 M HCl ad/dioxane (1/1) at 25 °C (run 4). In the reaction of 3f. dehydrated product 6f(26%) was also obtained with 11f(35%)even at 0 °C for 30 min (run 7). Stereoconfiguration of *cis*-3k-n was completely retained in *cis*-11k-n (runs 9–12).

On the contrary, *cis*-3h,i (X = Me) were transformed to *cis*-11h,i, *trans*-3,4-disubstituted 5,5-diaryl- γ -butyrolactones *trans*-15h,i, and 4-substituted 5,5-diaryloxazolidin-2-imines 16h,i by treatment with 1 M HCl in MeOH depending on the reaction conditions (Table 9). The treatment of *cis*-3h with 1 M HCl in MeOH at 0 °C for 12 h gave *cis*-11h (50%) and *trans*-15h (25%) (run 1). The reaction at 25 °C accelerated the isomerization of *cis*-11h to *trans*-15h and brought about the formation of 16h (runs 2 and 3). Under the same conditions, the product converged with 16h (90%) after 120 h (run 4). The transformation of *cis*-3h to 16h was completed at reflux temperature within 3 h (run 5). The treatment of *cis*-3i at 0 °C for 8 h gave *cis*-11i (42%) and *trans*-15i (24%) (run 6) and that

Table 5. Detrimethylsilylation of 3a-n to 11f-j, 12a-e, and 12h-m with TBAF

		MeN 3a- cis- cis-	$ \begin{array}{c} & & \\ & & $	THF MeN 11f, 11f,	$ \begin{array}{c} X \\ N \\ Me \\ Ar \\ Ar \\ Me \\ Ar \\ A$		
run	3	temp. (°C)	time	11	% yield of 11 ^{<i>a</i>} (<i>cis:trans</i>)	12	% yield of 12^a (dr)
f1	3a	25	15 min			12a	87
2	3b	25	15 min			12b	69
3	3c	25	15 min			12c	83
4	3d	25	15 min			12d	84
5	3e	25	15 min			12e	85
6	3f	25	15 min	11f	81		
7	3g	25	15 min	11g	88		
8	cis-3h	25	15 min	11h	26 (3:97)	12h	58 (70:30) ^b
9	cis-3h	0	15 min	11h	88 (86:14)		
10	cis-3h	0	12 h	11h	72 (31:69)	12h	15 (80:20) ^b
11	cis-3i	25	12 h	11i	34 (<1:99)	12i	54 (78:22) ^b
12	cis-3j	25	15 min	11j	90 (29:71)		
13	cis-3j	25	12 h	11j	19 (<1:99)	12j	67 (45:55) ^b
14	cis-3k	25	15 min			12k	63 (>99:1) ^c
15	cis-31	25	15 min			12l	49 (>99:1) ^c
16	cis-3m	25	15 min			12m	82 (>99:1) ^c
17	cis-3n	25	15 min			12n	82 (>99:1) ^c

^aIsolated yields. ^berythro:threo in parentheses. ^cObtained as threo only.

Table 6. Detrimethylsilylation of 5d-i to 13d-g and 14f-i with TBAF

Table 7. Relative Energies of E to C (Ar = Ph, X = H, Me, F) Calculated at the B3LYP/6-311+G(2d,p) Level Using the IEFPCM Model in THF

Х	С	Ε	relative energy of E to $C \; (\mbox{kcal/mol})$		
Н	Ca	Ea	-5.71		
Н	Ca	Ea'	3.20		
Me	cis-Ch ^a	<i>erythro-</i> Eh	-6.71		
F	cis-Ck	threo-Ek	-10.09		
^a Relative energy to <i>trans</i> -Ch is 5.78 kcal/mol.					

at 25 °C or reflux temperature did 16i (89% or 90%) as a sole product (runs 7 and 8). Similarly to the reaction of 3*c*, methyl ether *cis*-11j' was formed as a major product (52%) with a small amount of *cis*-11j (8%) and 16j (11%) from *cis*-3j under the conditions at 0 °C for 6 h (run 9). The alcohol *cis*-11j was obtained predominantly (59%) with a small amount of *trans*-15j

Table 8. Detrimethylsilylation of 3a-g and 3k-n to 11a-g and 11k-n with 1 M HCl in MeOH

	MeN O 3a- cis	Ar ar ar ar ar ar ar ar ar ar a	1M HCI MeOH	$MeN \rightarrow Me Ar$ 11a-g X = H <i>cis</i> -11k-n X	OH `Ar I S = F
run	3	temp. (°C)	time	11	% yield of 11 ^a
1	3a	25	15 min	11a	93
2	3b	25	30 min	11b	92
3	3c	0	30 min	11c	63 ^{<i>b</i>,<i>e</i>}
4	3c	25	6 h ^c	11c	85
5	3d	0	30 min	11d	81
6	3e	25	3 h	11e	70
7	3f	0	30 min	11f	35 ^d
8	3g	0	30 min	11g	88
9	cis-3k	25	2 h	cis-11k	91
10	cis-31	25	6 h	<i>cis</i> -111	93
11	cis-3m	25	12 h	cis-11m	80
12	cis-3n	25	6 h	<i>cis</i> -11n	84

^{*a*}Isolated yields. ^{*b*}Obtained with 11c' (23%). ^{*c*}In 1 M HCl aq/dioxane (1/1). ^{*d*}Obtained with 6f (26%). ^{*e*}

(15%) by treatment with 1 M HCl aq/dioxane (1/1) at 25 °C for 12 h (run 10). The products 11h-j, 15h-j, and 16h-j were all formed as single stereoisomers, and the stereostructures of 11h-j and 15h-j were confirmed to be *cis* and *trans*, respectively, by X-ray and ¹H NMR analyses. Although the stereoconfiguration of 16h-j could not be determined, it seemed that the *erythro*-isomers of 16h-j were obtained exclusively with retaining the stereochemistry. Moreover, it is probable that Z-imines of 16h-j (*erythro*-Z) were formed

			Men Men Me Ar cis-3h-j	MS 1M HCI MS MeOH	MeN Me Ar <i>Me</i> Ar <i>cis</i> -11h-j	CONHMe MeN Me I Ar Ar <i>trans</i> -15h-j	COOMe Me Ar Ar NMe Ne Me 16h-j (erythro-Z)		
run	cis-3	temp. (°C)	time (h)	cis-11	% yield of 11^a	trans-15	% yield of 15^a	16	% yield of 16 ^{<i>a</i>}
1	3h	0	1	11h	50	15h	25		
2	3h	25	4	11h	25	15h	49	16h	16
3	3h	25	12	11h	15	15h	24	16h	57
4	3h	25	120					16h	90
5	3h	reflux	3					16h	90
6	3i	0	8	11i	42	15i	24		
7	3i	25	72					16i	89
8	3i	reflux	3					16i	90
9	3j	0	6	11j	$8^{b,d}$			16j	11
10	3j	25	12 ^c	11j	59	15j	15		
	1				1				

Table 9. Detrimethylsilylation of cis-3h-j to cis-11h-j, trans-15h-j, and 16h-j with 1 M HCl in MeOH

^aIsolated yields. ^bObtained with 11j' (52%). ^cIn 1 M HCl ag/dioxane (1/1). ^d

preferentially, since Z-imines are expected to be thermodynamically more stable than *E*-imines. Even after the reaction of *cis*-3h was carried out in refluxing 1 M HCl aq/dioxane (1/1) for 24 h, the carboxylic acid corresponding to 16h could not be obtained; *cis*-11h (45%) and *trans*-15h (30%) were afforded (Scheme 6). In contrast, the corresponding ethyl ester 16' (90%) was formed from *cis*-3h after reflux in 1 M HCl–EtOH for 3 h.

Scheme 6. Treatment of *cis*-3h with Refluxing 1 M HCl aq/ Dioxane (1/1) and 1 M HCl-EtOH

On the other hand, the treatment of 5d-j with 1 M HCl in MeOH at 0 °C for 1–3 h gave the corresponding desilylated alcohols 13d-j selectively (Table 10). From *cis*-5f-i (X = Me, F), *cis*-isomers of 13f-i were formed exclusively with keeping the stereostructure of *cis*-5f-i (runs 5–11).

The presumed reaction mechanism of the transformation of *cis*-3h to *trans*-15h and 16h (*erythro-Z*) is shown in Scheme 7. Initially, acid-catalyzed detrimethylsilylation of *cis*-3h in MeOH generates alcohol *cis*-11h. After protonation to the carbonyl group at the 4-position in *cis*-11h, intramolecular nucleophilic addition of the hydroxy group to the 4-position forms bicyclo[3.2.1] cation G. After proton migration to the nitrogen at the 3-position in G, ring-opening of the six-membered ring in

Table 10. Detrimethylsilylation of 5d-i to 13d-i with 1 M HCl in MeOH

	MeN Me 5d,e X = H cis-5f,g X = cis-5h,i X =	$\frac{1 \text{M H}}{\text{MeO}}$ $n = 2, 1$ $= Me$ $= F$	$\begin{array}{c} CI\\H\\C\end{array} \qquad \qquad MeN \qquad \qquad Ne\\Me \qquad \qquad Ne\\Me \qquad \qquad Ne\\Me \qquad \qquad n\\13d,e \ X = H\\cis-13f,g \ X = cis-13h,i \ X = 1\\cis-13h,i \ X$	OH C = Me = F
run	5 (<i>cis</i> -5f–i)	time (h)	13 (<i>cis</i> -13f–i)	% yield of 13 ^a
1	erythro-5d	1	erythro-13d	82
2	threo-5d	1	threo-13d	65
3	erythro-5c	2	erythro-13e	87
4	threo-5e	2	threo-13e	83
5	erythro-5f	1	erythro-13f	80
6	threo-5f	1	threo-13f	74
7	erythro-5g	1	erythro-13g	68
8	threo-5g	2	threo-13g	61
9	$5h^b$	3	13h	77 ^c
10	erythro-5i	1	erythro-13i	70
11	threo-5i	1	threo-13i	64
Isolate	d yields. ^b erythr	to:threo = 70	:30. ^c erythro:threo	= 73:27.

the resultant **H** to **I** and subsequent deprotonation from **I** afford γ -lactone *trans*-15h. Under reflux conditions, intramolecular nucleophilic substitution of the urea carbonyl oxygen atom to the 5-position in the protonated *trans*-15h (I) proceeds through carbocation J to give carboxylic acid L after deprotonation of the resultant **K**. Finally, acid-catalyzed esterification of L produces methyl ester 16h. The relative energies of *cis*-11h, *trans*-11h, *trans*-15h, L (*erythro-Z* and *erythro-E*), and 16h (*erythro-Z*) were calculated by the DFT method at the B3LYP/6-311+G(2d,p) level using the IEFPCM model in MeOH and are shown in Table 11. The calculation results show that *trans*-15h is thermodynamically more stable (4.49 kcal/mol) than *cis*-11h, whereas L (*erythro-Z*) is much more unstable (18.63 kcal/

а

Scheme 7. Presumed Reaction Mechanism of the Transformation of *cis*-3h to *trans*-15h and 16h

Table 11. Relative Energies of 11h, 15h, L, and 16h Calculated at the B3LYP/6-311+G(2d,p) Level Using the IEFPCM Model in MeOH

	relative energy (kcal/mol)
cis-11h	0
trans-11h	-4.41
trans-15h	-4.49
L (erythro-Z)	14.14
L (erythro-E)	20.15
6h $(erythro-Z)$ – MeOH + H ₂ O	11.58

mol) than *trans*-15h. As expected above, L (*erythro-Z*) is more stable (5.97 kcal/mol) than L (*erythro-E*). Accordingly, in the reaction of 11h with 1 M HCl aq/dioxane (1/1) (Scheme 6), L was not formed at all. Predictably, *trans*-11h is more stable (4.41 kcal/mol) than *cis*-11h, and therefore, isomerization of *cis*-11h to *trans*-11h was observed under the reflux conditions in 1 M HCl aq/dioxane (1/1), as shown in Scheme 6. Under the conditions in 1 M HCl-MeOH, the equilibrium between *cis*-11h, *trans*-15h, L, and 16h was completely moved to 16h by esterification of L (runs 4 and 5 in Table 9). The driving force of the isomerization of *cis*-11h-j to *trans*-15h-j seems to be release of steric hindrance, since this type of isomerization could not be observed for 3a-g, *cis*-3k-n (Table 8), and *trans*-11h-j (vide infra).

Isomerization of *cis*-5,6-Disubstituted 1,3-Dimethyl-5,6-dihydrouracils to *trans*-Isomers and Their Desilylation. The results of the isomerization of *cis*-3h-k,m (X = Me, F) to the corresponding *trans*-isomers *trans*-3h-k,m by heating at 150 °C in the presence of cat. DMAP are summarized in Table 12. The isomerization of *cis*-3h-j (X = Me) was completed after heating for 24 h (runs 1-3), while that of *cis*-3k,m (X = F) was finished within 8 h (runs 4 and 5). Similarly, the isomerization of *cis*-8f,h and *cis*-10f was effected under the Table 12. Isomerization from 3h-k,m to trans-3h-k,m

same conditions (Scheme 8). However, a dehydrofluorinated product 17h was the only product in the reaction of *cis*-10h

under the same conditions. Incidentally, *trans*-10h was obtained by dehydrogenation of *trans*-8h with DDQ.

The results of detrimethylsilylation of *trans*-3h-k,m with TBAF are shown in Table 13. Whereas mixtures of *trans*-11h-j and *threo*-12h-j (X = Me) were obtained from *trans*-3h-j (runs 1-3), *erythro*-12k,m (X = F) were only products from *trans*-3k,m (runs 4 and 5). The stereoconfiguration of *trans*-3h-k,m was completely reflected in *threo*-12h-j and *erythro*-12k,m. On the other hand, detrimethylsilylation of *trans*-3h-k,m with 1 M HCl aq/dioxane (1/1) at 25 °C selectively gave *trans*-11h-k,m in high yields (Table 14). The isomerization of *trans*-11h-j to γ -lactone 15 as described above could not be observed at all.

Assignment of Geometric Isomers of 5,6-Disubstituted 1,3-Dimethyl-5,6-dihydrouracils. Table 15 exhibits ¹H NMR chemical shifts of 6-H and coupling constants between 5-H and 6-H ($J_{5,6}$) of 5,6-*cis*- and *trans*-substituted 5,6-dihydro-1,3-dimethyluracils obtained in this paper. These results indicate

Table 13. Detrimethylsilylation of trans-3h-l,k,m with TBAF

Table 14. Detrimethylsilylation of *trans*-3h-k,m with 1 M HCl aq/Dioxane (1/1)

that the $J_{5,6}$ values of 5,6-disubstituted uracils are within 5.3–8.0 Hz for *cis* and 0–2.6 Hz for *trans*. Consequently, the geometric structure of 5,6-disubstituted 5,6-dihydrouracils can readily be assigned by the $J_{5,6}$ values of their ¹H NMR spectra.

CONCLUSION

The electroreductive intermolecular coupling of 1,3-dimethyluracil (1a), thymine (1b), and 5-fluorouracil (1c) with benzophenones 2a-g and alkyl aryl ketones 4a-e in the presence of TMSCl in THF proceeded at the 6-position of 1a-c to give adducts 3a-n and 5a-i, respectively. The adducts 3h-n and 5f-i obtained from 1b and 1c were formed as cis-isomers stereoselectively. Furthermore, the adducts 5d-i derived from cyclic alkyl aryl ketones 4d and 4e were obtained erythroselectively. Treatment of 3a-j obtained from 1a and 1b with refluxing cat. p-TsOH/toluene or xylene gave 6-diarylmethyl-1,3-dimethyluracils 6a-j. In contrast, the same treatment of 3k-n obtained from 1c afforded 5,6-fused 1,3-dimethyluracils 7k-n. The adducts 5a-i were transformed to 6-alkenyl-5,6dihydro-1,3-dimethyluracils 8a-i by reflux in p-TsOH/xylene or toluene. Treatment of 3a-f, cis-3k-n, and cis-5h,i obtained from 1a and 1c with TBAF in THF gave 4-substituted 5,5diaryloxazolidin-2-ones 12a-e, threo-12k-n, and threo-14h,i, respectively. On the other hand, the same treatment of *cis*-3h-j obtained from 1b afforded trans-isomerized alcohols trans-11hj and diastereomeric mixtures of 12h-j. The same treatment of cis-5f,g obtained from 1b also produced trans-isomerized alcohols trans-13f,g. Treatment of the adducts 3 and 5 except for cis-3h-j with 1 M HCl-MeOH gave the corresponding

Table 15. ¹ H NMR Chemical Shifts of 6-H and Coupling
Constants $(J_{5,6})$ of 5,6-cis- and trans-Substituted 1,3-
Dimethyl-5,6-dihydrouracils

	cis		tra	trans		
•	6-H (δ)	$J_{5,6}$ (Hz)	6-Η (δ)	J _{5,6} (Hz)		
3h	4.45	6.3	4.09	0 ^{<i>a</i>}		
11h	4.24	5.8	3.93	0 ^{<i>a</i>}		
3i	4.41	6.3	4.03	0		
11i	4.16	5.4 ^a	3.86	0		
3j	4.38	6.9	4.02	0		
11j	4.13	5.9	3.83	0 ^{<i>a</i>}		
11j′	4.41	6.7 ^{<i>a</i>}				
3k	4.96	8.0	4.61	0		
11k	4.71	6.9	4.44	0		
31	4.90	7.7 ^a				
111	4.67	6.9				
3m	4.88	8.0	4.53	0		
11m	4.63	6.9	4.34	0		
3n	4.71	7.7 ^a				
11n	4.61	6.7 ^a				
erythro-5f	3.77	6.3				
threo-5f	3.52	5.3				
8f	4.72	7.0	4.21	0		
10f	5.45	7.3	4.95	2.3		
erythro-13f	3.90	6.3 ^a	3.40	0		
threo-13f	3.90	6.0	3.41	0		
erythro-5g	3.68	6.2				
threo-5g	3.22	5.9				
8g	4.56	6.9				
erythro-13g	3.75	6.1	3.36	1.1		
threo-13g	3.37	5.6 ^a	3.07	0 ^{<i>a</i>}		
erythro-5h	3.97	6.7				
threo-5h	3.84	6.2				
8h	5.03	6.9 ^a	4.83	2.5		
10h	5.75	7.5	5.54	2.6		
erythro-13h	4.22	6.9 ^a				
threo-13h	3.93	6.6				
erythro-5i	3.99	6.9				
threo-5i	3.54	6.7				
8i	4.93	6.9 ^a				
erythro-13i	4.13	7.0				
threo-13i	3.66	6.9				
Confirmed by X-	ray crystallo	graphy.				

desilylated alcohols 11 and 13 with completely retaining their stereochemistry. The same treatment of *cis*-3h-j afforded 3,4-

disubstituted-5,5-diaryl- γ -butyrolactones *trans*-15h-j and 4-substituted 5,5-diaryloxazolidin-2-imines 16h-j (*erythro-Z*) depending on the reaction conditions. These types of transformations were observed only in the reaction of highly sterically hindered *cis*-3h-j. Isomerization of *cis*-3h-k,m and *cis*-8f,h to the corresponding *trans*-isomers was effected by heating in the presence of cat. DMAP. The geometric structure of 5,6-disubstituted 5,6-dihydro-1,3-dimethyluracils was assigned by the $J_{5,6}$ values of their ¹H NMR spectra.

EXPERIMENTAL SECTION

General Methods. Column chromatography was performed on silica gel 60. THF was freshly distilled from sodium benzophenone ketyl radical. DMF, TMSCl, and TEA were distilled from CaH₂.

Typical Procedure for Electroreductive Coupling. A 0.3 M solution of Bu₄NClO₄ in THF (15 mL) was placed in the cathodic chamber of a divided cell (40 mL beaker, 3 cm diameter, 6 cm height) equipped with a platinum cathode (5 \times 5 cm²), a platinum anode (2 \times 1 cm^2), and a ceramic cylindrical diaphragm (1.5 cm diameter). A 0.3 M solution of Et₄NOTs in DMF (4 mL) was placed in the anodic chamber (inside the diaphragm). 1,3-Dimethylpyrimidine-2,4(1H,3H)-dione (1a) (140 mg, 1.0 mmol), benzophenone (2a) (368 mg, 2.0 mmol), TMSCl (0.64 mL, 5 mmol), and TEA (0.70 mL, 5 mmol) were added to the cathodic chamber. After 400 C of electricity was passed at a constant current of 200 mA at 25 °C under a nitrogen atmosphere, the catholyte was evaporated in vacuo. The residue was dissolved in diethyl ether (20 mL), and the insoluble solid was filtered off. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give 3a (305 mg) in 77% yield. Compounds 3a-d, cis-3h-n, and 5a-d were already reported.6

1,3-Dimethyl-6-(5-((trimethylsilyl)oxy)-5H-dibenzo[a,d][7]annulen-5-yl)dihydropyrimidine-2,4(1H,3H)-dione (**3e**). Colorless paste (244 mg, 58%) R_f 0.5 (hexanes-ethyl acetate, 1:1); IR (ATR) 1707, 1655, 1512, 1483, 993, 980, 943, 912, 880, 835, 806, 797, 764, 756, 727, 683, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 0.36 (s, 9H), 2.08 (d, 1H, *J* = 17.0 Hz), 2.32 (dd, 1H, *J* = 7.9, 17.0 Hz), 3.16 (s, 3H), 4.13 (d, 1H, *J* = 7.9 Hz), 6.89 (s, 2H), 7.32–7.38 (m, 4H), 7.41–7.49 (m, 2H), 7.78–7.83 (m, 2H); ¹³C NMR (CDCl₃) δ 3.3 (q), 27.1 (q), 31.6 (t), 37.2 (q), 56.3 (d), 88.6 (s), 127.4 (d), 127.6 (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.7 (d), 130.6 (d), 130.7 (d), 131.5 (d), 132.3 (d), 133.3 (s), 138.7 (s), 140.6 (s), 154.2 (s), 169.3 (s); HRMS (ESI, ion trap) calcd for C₂₄H₂₉N₂O₃Si (M + H⁺) 421.1947; found 421.1945.

1,3-Dimethyl-6-(9-((trimethylsilyl)oxy)-9,10-dihydroanthracen-9yl)dihydropyrimidine-2,4(1H,3H)-dione (**3f**). White solid (180 mg, 44%); R_f 0.3 (hexanes-ethyl acetate, 2:1); mp 186–188 °C; IR (ATR) 1709, 1663, 1558, 1541, 1506, 1481, 951, 945, 920, 899, 878, 868, 843, 775, 768, 754, 721, 689, 673, 669 cm⁻¹; ¹H NMR (CDCl₃) δ –0.21 (s, 9H), 2.33 (d, 1H, *J* = 17.2 Hz), 2.49 (dd, 1H, *J* = 8.0, 17.2 Hz), 2.52 (s, 3H), 3.12 (s, 3H), 3.69 (d, 1H, *J* = 8.0 Hz), 4.04 (d, 1H, *J* = 20.5 Hz), 4.18 (d, 1H, *J* = 20.5 Hz), 7.27–7.37 (m, 6H), 7.57–7.60 (m, 1H), 7.65–7.68 (m, 1H); ¹³C NMR (CDCl₃) δ 1.3 (q), 26.1 (q), 31.4 (t), 33.4 (t), 38.4 (q), 65.9 (d), 78.8 (s), 125.7 (d), 126.1 (d), 126.5 (d), 127.32 (d), 127.34 (d), 127.6 (d), 127.8 (d), 133.0 (s), 133.3 (s), 136.0 (s), 137.7 (s), 152.9 (s), 167.8 (s). Anal. Calcd for C₂₃H₂₈N₂O₃Si: C, 67.61; H, 6.91; N, 6.86. Found: C, 67.57; H, 6.90; N, 6.75.

1,3-Dimethyl-6-(9-((trimethylsilyl)oxy)-9H-xanthen-9-yl)dihydropyrimidine-2,4(1H,3H)-dione (**3g**). White solid (213 mg, 52%); R_f 0.3 (hexanes—ethyl acetate, 2:1); mp 176–178 °C; IR (ATR) 1711, 1663, 1601, 1574, 1506, 1474, 961, 928, 903, 880, 870, 843, 758, 750, 689, 673 cm⁻¹; ¹H NMR (CDCl₃) δ –0.16 (s, 9H), 2.31 (d, 1H, *J* = 17.1 Hz), 2.53 (dd, 1H, *J* = 8.4, 17.1 Hz), 2.59 (s, 3H), 3.19 (s, 3H), 3.68 (d, 1H, *J* = 8.4 Hz), 7.13–7.22 (m, 4H), 7.31–7.39 (m, 2H), 7.46–7.49 (m, 1H), 7.53–7.56 (m, 1H); ¹³C NMR (CDCl₃) δ 1.5 (q), 26.5 (q), 31.4 (t), 38.8 (q), 65.9 (d), 74.3 (s), 116.5 (d), 116.7 (d), 121.6 (s), 122.7 (d), 123.2 (d), 123.8 (s), 126.7 (d), 127.8 (d), 129.7 (d), 129.9 (d), 149.8 (s), 149.9 (s), 153.3 (s), 167.4 (s). Anal. Calcd for C₂₂H₂₆N₂O₄Si: C, 64.36; H, 6.38; N, 6.82. Found: C, 64.41; H, 6.40; N, 6.73. (*R**)-1,3-Dimethyl-6-((*S**)-1-((trimethylsilyl)oxy)-2,3-dihydro-1*H*inden-1-yl)dihydropyrimidine-2,4(1*H*,3*H*)-dione (*erythro-5e*). Colorless paste (99 mg, 29%); *R*_f 0.5 (hexanes-ethyl acetate, 1:1); IR (ATR) 1709, 1659, 1477, 993, 980, 947, 926, 910, 881, 868, 837, 754, 725, 687, 675 cm⁻¹; ¹H NMR (CDCl₃) δ -0.06 (s, 9H), 2.19–2.26 (m, 1H), 2.33–2.38 (m, 1H), 2.70 (dd, 1H, *J* = 8.0, 16.7 Hz), 2.81 (dd, 1H, *J* = 1.0, 16.7 Hz), 2.84 (s, 3H), 2.87–2.98 (m, 2H), 3.14 (s, 3H), 3.53 (dd, 1H, *J* = 1.0, 8.0 Hz), 7.18–7.27 (m, 4H); ¹³C NMR (CDCl₃) δ 1.7 (q), 26.7 (q), 29.4 (t), 31.7 (t), 37.8 (t), 38.8 (q), 62.3 (d), 88.8 (s), 124.7 (d), 125.2 (d), 126.4 (d), 128.9 (d), 142.0 (s), 143.5 (s), 153.8 (s), 168.4 (s); HRMS (ESI, ion trap) calcd for C₁₈H₂₇N₂O₃Si (M + H⁺) 347.1791; found 347.1789.

(*R**)-1,3-Dimethyl-6-((*R**)-1-((trimethylsilyl)oxy)-2,3-dihydro-1*H*inden-1-yl)dihydropyrimidine-2,4(1*H*,3*H*)-dione (threo-5e). Colorless paste (81 mg, 23%); *R*_f 0.35 (hexanes-ethyl acetate, 1:1); IR (ATR) 1709, 1651, 1516, 1474, 980, 945, 883, 870, 835, 768, 756, 727, 698, 686, 671 cm⁻¹; ¹H NMR (CDCl₃) δ -0.08 (s, 9H), 2.14–2.28 (m, 2H), 2.43 (s, 3H), 2.80–2.87 (m, 3H), 2.96 (dd, 1H, *J* = 9.0, 15.9 Hz), 3.25 (dd, 1H, *J* = 2.1, 6.2 Hz), 7.19–7.29 (m, 4H); ¹³C NMR (CDCl₃) δ 1.4 (q), 27.0 (q), 28.9 (t), 33.1 (t), 38.0 (t), 38.1 (q), 60.7 (d), 88.7 (s), 124.7 (d), 125.1 (d), 126.8 (d), 128.7 (d), 141.1 (s), 144.0 (s), 154.1 (s), 169.5 (s); HRMS (ESI, ion trap) calcd for C₁₈H₂₇N₂O₃Si (M + H⁺) 347.1791; found 347.1789.

 $(SR^*, 6R^*)$ -1,3,5-Trimethyl-6-((S*)-1-((trimethylsilyl)oxy)-1,2,3,4tetrahydronaphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (*cis-erythro-5f*). Colorless paste (242 mg, 65%); R_f 0.45 (hexanesethyl acetate, 2:1); IR (ATR) 1709, 1653, 1520, 1485, 943, 914, 903, 885, 858, 837, 770, 758, 741, 687, 662 cm⁻¹; ¹H NMR (CDCl₃) δ -0.13 (s, 9H), 1.47 (d, 3H, *J* = 7.3 Hz), 1.49–1.60 (m, 1H), 1.71–1.90 (m, 2H), 2.04–2.11 (m, 1H), 2.28 (s, 3H), 2.66–2.72 (m, 2H), 3.05– 3.13 (m, 1H), 3.17 (s, 3H), 3.77 (d, 1H, *J* = 6.3 Hz), 7.03–7.06 (m, 1H), 7.16–7.23 (m, 2H), 7.54–7.57 (m, 1H); ¹³C NMR (CDCl₃) δ 1.6 (q), 13.6 (q), 20.0 (t), 27.3 (q), 29.3 (t), 33.3 (t), 37.8 (q), 39.5 (d), 68.1 (d), 77.3 (s), 125.6 (d), 127.6 (d), 128.2 (d), 128.8 (d), 137.3 (s), 140.0 (s), 153.8 (s), 172.6 (s); HRMS (ESI, ion trap) calcd for C₂₀H₃₁N₂O₃Si (M + H⁺) 375.2104; found 375.2101.

 $(5R^*, 6R^*)$ -1,3,5-Trimethyl-6-((R^*)-1-((trimethylsilyl)oxy)-1,2,3,4tetrahydronaphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (*cis-threo-5f*). Colorless paste (43 mg, 11%); R_f 0.4 (hexanes-ethyl acetate, 1:1); IR (ATR) 1709, 1663, 1483, 955, 918, 910, 876, 837, 770, 750, 725, 687, 667 cm⁻¹; ¹H NMR (CDCl₃) δ -0.10 (s, 9H), 1.46 (d, 3H, J = 7.0 Hz), 1.81–1.91 (m, 2H), 2.01–2.06 (m, 1H), 2.06 (s, 3H), 2.25–2.36 (m, 1H), 2.80–2.85 (m, 2H), 2.95–3.02 (m, 1H), 3.25 (s, 3H), 3.52 (d, 1H, J = 5.3 Hz), 7.02–7.05 (m, 1H), 7.11–7.23 (m, 3H); ¹³C NMR (CDCl₃) δ 1.6 (q), 13.7 (q), 20.3 (t), 27.3 (q), 28.4 (t), 35.8 (t), 36.3 (q), 39.9 (d), 66.2 (d), 79.1 (s), 126.0 (d), 127.5 (d), 128.0 (d), 128.4 (d), 135.9 (s), 139.3 (s), 154.1 (s), 172.5 (s); HRMS (ESI, ion trap) calcd for C₂₀H₃₁N₂O₃Si (M + H⁺) 375.2104; found 375.2102.

 $(5R^{3},6R^{3})$ -1,3,5-Trimethyl-6-((5*)-1-((trimethylsilyl)oxy)-2,3-dihydro-1H-inden-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (cis-erythro-5g). Colorless paste (128 mg, 36%); R_{f} 0.45 (hexanes-ethyl acetate, 2:1); IR (ATR) 1709, 1665, 1474, 928, 901, 876, 837, 806, 781, 756, 735, 704, 687, 669 cm⁻¹; ¹H NMR (CDCl₃) δ -0.10 (s, 9H), 1.48 (d, 3H, J = 7.3 Hz), 2.04–2.13 (m, 1H), 2.27–2.33 (m, 1H), 2.37 (s, 3H), 2.56–2.64 (m, 1H), 2.83–2.91 (m, 1H), 3.04–3.11 (m, 1H), 3.13 (s, 3H), 3.68 (d, 1H, J = 6.2 Hz), 7.18–7.28 (m, 3H), 7.31–7.33 (m, 1H); ¹³C NMR (CDCl₃) δ 1.7 (q), 13.2 (q), 27.3 (q), 29.7 (t), 36.3 (t), 39.1 (q), 39.7 (d), 67.0 (d), 88.1 (s), 124.5 (d), 125.1 (d), 126.1 (d), 128.7 (d), 142.0 (s), 145.5 (s), 153.4 (s), 172.6 (s); HRMS (ESI, ion trap) calcd for C₁₉H₂₉N₂O₃Si (M + H⁺) 361.1947; found 361.1945.

 $(5R^*,6R^*)$ -1,3,5-Trimethyl-6-((R^*)-1-((trimethylsilyl)oxy)-2,3-dihydro-1H-inden-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (cis-threo-5g). Colorless paste (63 mg, 17%); R_f 0.2 (hexanes-ethyl acetate, 2:1); IR (ATR) 1709, 1659, 1477, 964, 916, 899, 837, 772, 752, 725, 681, 669 cm⁻¹; ¹H NMR (CDCl₃) δ -0.11 (s, 9H), 1.49 (d, 3H, J = 6.9 Hz), 2.09–2.17 (m, 1H), 2.11 (s, 3H), 2.47–2.53 (m, 1H), 2.79–2.88 (m, 1H), 2.93–3.01 (m, 1H), 3.22 (d, 1H, J = 5.9 Hz), 3.22 (s, 3H), 7.06–7.10 (m, 1H), 7.18–7.21 (m, 1H), 7.23–7.27 (m, 2H); ¹³C NMR (CDCl₃) δ 1.5 (q), 13.3 (q), 27.3 (q), 29.2 (t), 36.9 (q), 39.2 (d), 39.9 (t), 65.2 (d), 88.4 (s), 124.5 (d), 125.5 (d), 127.1 (d), 128.4 (d), 141.1

(s), 145.1 (s), 154.0 (s), 172.4 (s); HRMS (ESI, ion trap) calcd for $C_{19}H_{29}N_2O_3Si$ (M + H⁺) 361.1947; found 361.1944.

(5R*,6S*)-5-Fluoro-1,3-dimethyl-6-(1-((trimethylsilyl)oxy)-1,2,3,4tetrahydronaphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (cis-5h). Colorless paste (227 mg, 60%, 70:30 dr); R_f 0.35 (hexanesethyl acetate, 2:1); IR (ATR) 1719, 1670, 953, 899, 839, 795, 748, 723, 691, 665 cm⁻¹; ¹H NMR (CDCl₃) δ –0.042 (s, 3H), –0.037 (s, 6H), 1.83-1.95 (m, 2.67H), 2.03-2.10 (m, 1.33H), 2.28-2.34 (m, 0.67H), 2.58-2.63 (m, 0.33H), 2.74-2.90 (m, 2H), 3.02 (s, 2H), 3.20 (s, 2H), 3.25 (s, 1H), 3.84 (d, 0.33H, J = 6.2 Hz), 3.97 (d, 0.67H, J = 6.7 Hz), 5.20 (dd, 0.67H, J = 6.7, $J_{HF} = 47.0$ Hz), 5.27 (dd, 0.33H, J = 6.2, $J_{HF} =$ 47.1 Hz), 7.04-7.09 (m, 1H), 7.14-7.27 (m, 2.33H), 7.47-7.51(m, 0.67H); ¹³C NMR (CDCl₃) δ major: 1.7 (q), 19.4 (t), 27.1 (q), 28.3 (t), 34.9 (t), 39.3 (q), 64.9 (d, J_{CCF} = 18.0 Hz), 78.2 (s, J_{CCCF} = 2.4 Hz), 83.3 (d, J_{CF} = 200.3 Hz), 124.9 (d), 127.6 (d), 128.1 (d), 128.6 (d), 136.5 (s), 138.1 (s), 153.1 (s), 166.9 (s, $J_{CCF} = 21.6 \text{ Hz}$), minor: 1.4 (q), 19.9 (t), 27.1 (q), 27.9 (t), 34.3 (t), 36.7 (q), 63.4 (d, *J*_{CCF} = 19.2 Hz), 77.9 (s, $J_{CCCF} = 2.4$ Hz), 83.9 (d, $J_{CF} = 196.1$ Hz), 126.0 (d), 127.4 (d), 127.6 (d), 128.5 (d), 135.8 (s), 138.4 (s), 152.8 (s), 166.9 (s, J_{CCF} = 21.0 Hz); HRMS (ESI, ion trap) calcd for C₁₉H₂₈FN₂O₃Si (M + H⁺) 379.1853; found 379.1851.

 $(5R^*, 6S^*)$ -5-Fluoro-1,3-dimethyl-6-((S*)-1-((trimethylsilyl)oxy)-2,3-dihydro-1H-inden-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (*cis-erythro-5i*). Colorless paste (84 mg, 23%); R_f 0.65 (hexanes-ethyl acetate, 1:1); IR (ATR) 1734, 1670, 1474, 991, 951, 893, 839, 752, 725, 683 cm⁻¹; ¹H NMR (CDCl₃) δ -0.05 (s, 9H), 2.15–2.23 (m, 1H), 2.54–2.61 (m, 1H), 2.71 (s, 3H), 2.84–2.93 (m, 1H), 2.98–3.07 (m, 1H), 3.32 (s, 3H), 3.99 (d, 1H, *J* = 6.9 Hz), 5.21 (dd, 1H, *J* = 6.9 J_{HF} = 47.0 Hz), 7.15–7.25 (m, 4H); ¹³C NMR (CDCl₃) δ 1.8 (q), 26.9 (q), 29.1 (t), 39.1 (t), 39.4 (q), 65.4 (d, J_{CCF} = 21.6 Hz), 83.5 (d, J_{CF} = 197.0 Hz), 88.8 (s), 125.1 (d), 125.3 (d), 126.1 (d), 129.0 (d), 142.7 (s), 142.9 (s), 152.7 (s), 165.1 (s, J_{CCF} = 21.6 Hz); HRMS (ESI, ion trap) calcd for C₁₈H₂₅FN₂O₃Si (M + H⁺) 365.1697; found 365.1695.

 $(5R^*,6S^*)$ -5-Fluoro-1,3-dimethyl-6- $((R^*)$ -1-((trimethylsilyl)oxy)-2,3-dihydro-1H-inden-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (cis-threo-5i). Colorless paste (69 mg, 19%); R_f 0.55 (hexanes-ethyl acetate, 1:1); IR (ATR) 1728, 1717, 1676, 1665, 1474, 939, 908, 839, 804, 772, 752, 725, 694, 679 cm⁻¹; ¹H NMR (CDCl₃) δ -0.06 (s, 9H), 2.16–2.22 (m, 1H), 2.20 (s, 3H), 2.66–2.71 (m, 1H), 2.80–2.87 (m, 1H), 2.92–3.01 (m, 1H), 3.24 (s, 3H), 3.54 (d, 1H, J = 6.7, J_{HF} = 47.0 Hz), 7.15–7.30 (m, 4H); ¹³C NMR (CDCl₃) δ 1.8 (q), 27.3 (q), 29.0 (t), 37.7 (q), 38.6 (t), 62.7 (d, J_{CCF} = 20.4 Hz), 83.2 (d, J_{CF} = 195.5 Hz), 87.1 (s), 124.7 (d), 125.2 (d), 127.1 (d), 128.7 (d), 141.3 (s), 144.3 (s), 153.0 (s), 167.0 (s, J_{CCF} = 21.6 Hz); HRMS (ESI, ion trap) calcd for C₁₈H₂₅FN₂O₃Si (M + H⁺) 365.1699; found 365.1696.

Typical Procedure for Elimination of Trimethylsilanol from the Adducts. A solution of 3a (198 mg, 0.5 mmol) and *p*-TsOH (10 mg) in toluene (10 mL) was refluxed under a nitrogen atmosphere for 12 h. After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes–EtOAc) to give 6a(132 mg) in 86% yield. Compounds 6a-e, 6h-j, 7k-n, 8a-d, and 9a-c were already reported.⁶

6-(Anthracen-9-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)dione (6f). Colorless paste (169 mg, 62%); R_f 0.4 (hexanes-ethyl acetate, 2:1); IR (ATR) 1707, 1655, 1526, 993, 891, 862, 843, 793, 758, 731, 702, 683, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 2.77 (s, 3H), 2.93 (dd, 1H, J = 5.3, 17.6 Hz), 3.41 (s, 3H), 3.69 (dd, 1H, J = 13.8, 17.6 Hz), 6.23 (dd, 1H, J = 5.3, 13.8 Hz), 7.48–7.61 (m, 4H), 8.05–8.10 (m, 2H), 8.23–8.27 (m, 1H), 8.51–8.56 (m, 2H); ¹³C NMR (CDCl₃) δ 28.2 (q), 33.0 (q), 37.2 (t), 51.6 (d), 121.7 (d), 123.7 (d), 125.0 (d), 125.1 (d), 126.7 (s), 126.9 (d), 127.3 (d), 129.1 (s), 129.7 (d), 129.8 (d), 130.1 (d), 130.2 (s), 131.4 (s), 131.7 (s), 154.8 (s), 168.5 (s); HRMS (ESI, ion trap) calcd for C₂₀H₁₉N₂O₂ (M + H⁺) 319.1447; found 319.1446.

1,3-Dimethyl-6-(9H-xanthen-9-yl)pyrimidine-2,4(1H,3H)-dione (6g). Colorless paste (150 mg, 94%); R_f 0.6 (hexanes-ethyl acetate, 1:1); IR (ATR) 1703, 1653, 1616, 1570, 1479, 989, 905, 860, 849, 824, 772, 762, 746, 700, 685, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 2.91 (s, 3H), 3.38 (s, 3H), 5.41 (s, 1H), 5.96 (s, 1H), 7.06–7.10 (m, 2H), 7.11–7.15 (m, 4H), 7.30–7.35 (m, 2H); ¹³C NMR (CDCl₃) δ 28.0 (q), 32.0 (q), 43.4 (d), 104.9 (d), 117.1 (d), 117.5 (s), 123.8 (d), 127.7 (d), 129.6 (d), 150.0 (s), 152.7 (s), 152.9 (s), 162.0 (s); HRMS (ESI, ion trap) calcd for $C_{19}H_{17}N_2O_3$ (M + H⁺) 321.1239; found 321.1237.

6-(1*H*-Inden-3-*y*))-1,3-dimethyldihydropyrimidine-2,4(1*H*,3*H*)dione (**8e**). Pale yellow solid (115 mg, 90%); R_f 0.4 (hexanes-ethyl acetate, 1:1); mp 116–118 °C; IR (ATR) 1763, 1746, 1705, 1647, 999, 968, 951, 914, 804, 772, 754, 721, 700, 682, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 3.05 (dd, 1H, *J* = 3.6, 16.6 Hz), 3.09 (s, 3H), 3.12 (dd, 1H, *J* = 7.0, 16.6 Hz), 3.22 (s, 3H), 3.39 (brs, 2H), 4.60–4.64 (m, 1H), 6.22–6.24 (m, 1H), 7.23–7.34 (m, 3H), 7.48–7.51 (m, 1H); ¹³C NMR (CDCl₃) δ 27.4 (q), 34.8 (q), 35.8 (t), 37.6 (t), 55.2 (d), 118.5 (d), 124.2 (d), 125.4 (d), 126.2 (d), 129.5 (d), 140.4 (s), 141.7 (s), 144.6 (s), 153.9 (s), 167.9 (s); HRMS (ESI, ion trap) calcd for C₁₅H₁₆N₂O₂ (M + H⁺) 257.1290; found 257.1287.

 $(5R^*, 6R^*)$ -6-(3, 4-Dihydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**cis-8f**). White solid (121 mg, 85%); R_f 0.3 (hexanes-ethyl acetate, 2:1); mp 159–160 °C; IR (ATR) 1701, 1649, 1597, 1508, 1474, 826, 816, 775, 754, 741, 712, 673, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 0.99 (d, 3H, J = 7.0 Hz), 2.12–2.30 (m, 2H), 2.67–2.71 (m, 2H), 3.03 (s, 3H), 3.13–3.20 (m, 1H), 3.26 (s, 3H), 4.72 (d, 1H, J = 7.0 Hz), 5.82 (dd, 1H, J = 3.5, 5.9 Hz), 7.17–7.28 (m, 4H); ¹³C NMR (CDCl₃) δ 11.9 (q), 22.7 (t), 27.6 (q), 28.0 (t), 34.7 (q), 40.2 (d), 56.8 (d), 121.4 (d), 126.2 (d), 126.6 (d), 127.2 (d), 128.1 (d), 132.2 (s), 134.1 (s), 136.3 (s), 154.1 (s), 170.8 (s). Anal. Calcd for C₁₇H₂₀N₂O₂: C, 71.81; H, 7.09; N, 9.85. Found: C, 71.80; H, 7.13; N, 9.76.

 $(SR^{*}, 6R^{*})$ -6-(1H-Inden-3-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**cis-8g**). Colorless paste (99 mg, 73%); R_f 0.45 (hexanes-ethyl acetate, 1:1); IR (ATR) 1707, 1661, 1479, 974, 918, 843, 833, 770, 756, 721, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 1.15 (d, 3H, J = 7.5 Hz), 3.02 (s, 3H), 3.20–3.27 (m, 1H), 3.29 (s, 3H), 3.39 (brs, 2H), 4.56 (d, 1H, J = 6.9 Hz), 6.23 (t, 1H, J = 1.9 Hz), 7.22–7.28 (m, 1H), 7.29–7.34 (m, 2H), 7.46–7.50 (m, 1H); ¹³C NMR (CDCl₃) δ 11.9 (q), 27.7 (q), 35.0 (q), 38.1 (t), 40.3 (d), 56.0 (d), 118.8 (d), 124.1 (d), 125.3 (d), 126.2 (d), 131.1 (d), 139.9 (s), 143.9 (s), 144.0 (s), 154.0 (s), 171.1 (s); HRMS (ESI, ion trap) calcd for C₁₆H₁₉N₂O₂ (M + H⁺) 271.1447; found 271.1445.

 $(5R^*, 6S^*)$ -6-(3,4-Dihydronaphthalen-1-yl)-5-fluoro-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (*cis*-8*h*). White solid (112 mg, 78%); *R*_f 0.5 (hexanes-ethyl acetate, 1:1); mp 152–154 °C; IR (ATR) 1722, 1676, 1508, 1474, 941, 912, 897, 835, 767, 762, 752, 733, 714, 689, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.21–2.37 (m, 2H), 2.66–2.79 (m, 2H), 3.06 (s, 3H), 3.26 (s, 3H), 5.03 (d, 1H, *J* = 6.9 Hz), 5.45 (dd, 1H, *J* = 6.9, *J*_{HF} = 48.1 Hz), 5.83 (t, 1H, *J* = 4.6 Hz), 7.14–7.25 (m, 4H); ¹³C NMR (CDCl₃) δ 22.8 (t), 27.71 (t), 27.73 (q), 35.1 (q), 56.3 (d, *J*_{CCF} = 24.0 Hz), 84.6 (d, *J*_{CF} = 193.1 Hz), 122.4 (d), 126.2 (d), 127.4 (d), 127.5 (d), 127.8 (d), 129.2 (s), 133.1 (s), 136.2 (s), 153.0 (s), 165.2 (s, *J*_{CCF} = 21.6 Hz). Anal. Calcd for C₁₆H₁₇FN₂O₂: C, 66.65; H, 5.94; N, 9.72. Found: C, 66.71; H, 5.96; N, 9.66.

 $(SR^*,6S^*)$ -5-Fluoro-6-(1H-inden-3-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-8i). White solid (104 mg, 76%); R_j 0.55 (hexanes-ethyl acetate, 1:1); mp 172–173 °C; IR (ATR) 1730, 1670, 1607, 1504, 974, 961, 922, 881, 858, 789, 779, 766, 752, 745, 718, 698, 677, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 3.09 (s, 3H), 3.26 (s, 3H), 3.41 (s, 2H), 4.93 (brd, 1H, *J* = 6.9 Hz), 5.47 (dd, 1H, *J* = 6.9, J_{HF} = 47.7 Hz), 6.27 (s, 1H), 7.22–7.27 (m, 1H), 7.29–7.33 (m, 1H), 7.37–7.41 (m, 1H), 7.44–7.47 (m, 1H); ¹³C NMR (CDCl₃) δ 27.7 (q), 35.3 (q), 38.1 (t), 55.2 (d, J_{CCF} = 24.6 Hz), 84.7 (d, J_{CF} = 193.1 Hz), 119.8 (d), 123.8 (d), 125.5 (d), 126.2 (d), 131.7 (d), 137.1 (s), 143.0 (s), 144.0 (s), 152.9 (s), 165.3 (s, J_{CCF} = 21.0 Hz). Anal. Calcd for C₁₅H₁₅FN₂O₂: C, 65.68; H, 5.51; N, 10.21. Found: C, 65.66; H, 5.52; N, 10.13.

Dehydrogenation of 8d. To a solution of 8d (54 mg, 0.20 mmol) in benzene (5 mL) was added DDQ (57 mg, 0.25 mmol), and the mixture was refluxed for 1 h. After filtration, the solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel (hexanes–EtOAc) to give $10d^6$ (46 mg) in 86% yield.

 $(5R^*, 6R^*)$ -1,3,5-Trimethyl-6-(naphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (**cis-10f**). Colorless paste (51 mg, 90%); R_f 0.55 (hexanes-ethyl acetate, 1:1); IR (ATR) 1705, 1655, 1597, 1508, 1477, 932, 799, 775, 752, 737, 712, 675 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (d, 3H, *J* = 7.0 Hz), 2.97 (s, 3H), 3.37 (s, 3H), 3.38–3.45 (m, 1H), 5.45 (d, 1H, *J* = 7.3 Hz), 7.16–7.20 (m, 1H), 7.41–7.46 (m, 1H), 7.51–7.60 (m, 2H), 7.82–7.85 (m, 1H), 7.89–7.92 (m, 1H), 8.04–8.08 (m, 1H); ¹³C NMR (CDCl₃) δ 11.5 (q), 27.9 (q), 35.0 (q), 40.3 (d), 56.6 (d), 121.9 (d), 123.3 (d), 125.79 (d), 125.81 (d), 126.6 (d), 129.2 (d), 129.3 (d), 132.1 (s), 132.2 (s), 133.6 (s), 154.0 (s), 170.8 (s); HRMS (ESI, ion trap) calcd for C₁₇H₁₉N₂O₂ (M + H⁺) 283.1447; found 283.1445.

 $(5R^*,6S^*)$ -5-Fluoro-1,3-dimethyl-6-(naphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (**cis-10h**). Colorless paste (53 mg, 93%); R_f 0.45 (hexanes—ethyl acetate, 1:1); IR (ATR) 1730, 1670, 1599, 1508, 1477, 908, 885, 799, 775, 750, 727 cm⁻¹; ¹H NMR (CDCl₃) δ 3.06 (s, 3H), 3.34 (s, 3H), 5.65 (dd, 1H, J = 7.5, J_{HF} = 47.5 Hz), 5.75 (dd, 1H, J = 1.7, 7.5 Hz), 7.08–7.12 (m, 1H), 7.43–7.47 (m, 1H), 7.51–7.60 (m, 2H), 7.86–7.91 (m, 2H), 7.99–8.04 (m, 1H); ¹³C NMR (CDCl₃) δ 27.9 (q), 35.3 (q), 56.6 (d, J_{CCF} = 25.2 Hz), 84.5 (d, J_{CF} = 191.9 Hz), 122.9 (d), 123.0 (d), 125.2 (d), 126.0 (d), 126.5 (d), 127.9 (s), 128.8 (d), 130.0 (d), 132.4 (s), 133.9 (s), 153.2 (s), 165.0 (s, J_{CCF} = 21.6 Hz); HRMS (ESI, ion trap) calcd for C₁₆H₁₆FN₂O₂ (M + H⁺) 287.1196; found 287.1195.

Treatment of the Adducts with TBAF. To a solution of 3a (99 mg, 0.25 mmol) in THF (5 mL) was added 1 M TBAF in THF (0.25 mL), and the solution was stirred at 25 °C under a nitrogen atmosphere for 15 min. After addition of AcOH (15 mg, 0.25 mmol), the solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel (hexanes–EtOAc) to give 12a (71 mg) in 87% yield.

Treatment of the Adducts with 1 M HCl–MeOH. To a solution of **3a** (99 mg, 0.25 mmol) in MeOH (2.5 mL) was added 2 M HCl in MeOH (2.5 mL), and the solution was stirred at 25 °C for 15 min. After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes–EtOAc) to give **11a** (75 mg) in 93% yield.

6-(*Hydroxydiphenylmethyl*)-1,3-dimethyldihydropyrimidine-2,4-(1*H*,3*H*)-dione (**11a**). White solid (71 mg, 93%); R_f 0.35 (hexanesethyl acetate, 1:1); mp 197–198 °C; IR (ATR) 3340, 1701, 1641, 1520, 1489, 982, 941, 920, 770, 758, 748, 706, 696, 687, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.52 (s, 3H), 2.80–2.92 (m, 3H), 2.95 (s, 3H), 4.30 (d, 1H, J = 6.7 Hz), 7.26–7.42 (m, 10H); ¹³C NMR (CDCl₃) δ 27.0 (q), 32.8 (t), 38.3 (q), 61.2 (d), 81.0 (s), 126.5 (d), 126.6 (d), 127.7 (d), 128.2 (d), 128.4 (d), 142.8 (s), 143.3 (s), 154.0 (s), 168.9 (s). Anal. Calcd for C₁₉H₂₀N₂O₃: C, 70.35; H, 6.21; N, 8.64. Found: C, 70.30; H, 6.17; N, 8.52.

6-(Bis(4-fluorophenyl))(hydroxy)methyl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (11b). White solid (83 mg, 92%); R_f 0.25 (hexanes-ethyl acetate, 1:1); mp 218–219 °C; IR (ATR) 3451, 3335, 1692, 1647, 1603, 1503, 1491, 980, 951, 833, 816, 804, 773, 758, 734, 696, 677, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.55 (s, 3H), 2.77 (d, 1H, *J* = 16.8 Hz), 2.90 (dd, 1H, *J* = 7.8, 16.8 Hz), 2.94 (s, 3H), 4.24 (d, 1H, *J* = 7.8 Hz), 6.99–7.10 (m, 4H), 7.29–7.34 (m, 2H), 7.34–7.39 (m, 2H); ¹³C NMR (CDCl₃) δ 26.5 (q), 32.4 (t), 38.1 (q), 60.8 (d), 79.8 (s), 114.4 (d, *J*_{CCF} = 20.7 Hz), 114.5 (d, *J*_{CCF} = 21.0 Hz), 128.3 (d, *J*_{CCCF} = 7.5 Hz), 128.5 (d, *J*_{CCCF} = 8.1 Hz), 138.5 (s, *J*_{CCCCF} = 3.0 Hz), 139.1 (s, *J*_{CCCCF} = 3.0 Hz), 153.5 (s), 161.4 (s, *J*_{CF} = 246.8 Hz), 161.5 (s, *J*_{CF} = 247.4 Hz), 168.3 (s). Anal. Calcd for C₁₉H₁₈F₂N₂O₃: C, 63.33; H, 5.03; N, 7.77. Found: C, 63.31; H, 5.05; N, 7.70.

6-(*Hydroxybis*(4-methoxyphenyl)methyl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**11c**). White solid (82 mg, 85%); R_f 0.4 (hexanes-ethyl acetate, 1:2); mp 198–199 °C; IR (ATR) 3447, 3379, 1695, 1641, 1607, 1582, 1508, 1491, 980, 951, 932, 916, 897, 826, 812, 800, 787, 756, 739, 692, 681, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.43 (brs, 1H), 2.63 (s, 3H), 2.86–2.90 (m, 2H), 2.93 (s, 3H), 3.79 (s, 3H), 3.81 (s, 3H), 4.22 (dd, 1H, *J* = 2.9, 5.7 Hz), 6.83–6.91 (m, 4H), 7.24–7.28 (m, 2H), 7.28–7.33 (m, 2H); ¹³C NMR (CDCl₃) δ 27.0 (q), 32.9 (t), 38.5 (q), 55.17 (q), 55.21 (q), 61.3 (d), 80.6 (s), 113.6 (d), 113.7 (d), 127.9 (d), 128.0 (d), 134.7 (s), 135.3 (s), 154.0 (s), 158.96 (s), 158.98 (s), 168.9 (s). Anal. Calcd for C₂₁H₂₄N₂O₅: C, 65.61; H, 6.29; N, 7.29. Found: C, 65.57; H, 6.33; N, 7.23.

6-(5-Hydroxy-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (11d). White solid (71 mg, 81%); R_f 0.4 (hexanes-ethyl acetate, 1:1); mp 231–232 °C; IR (ATR) 3329, 1717, 1634, 1489, 984, 974, 964, 920, 772, 756, 729, 692, 677 cm⁻¹; ¹H NMR (CDCl₃) δ 2.32 (d, 1H, J = 2.2 Hz), 2.34 (s, 3H), 2.51(dd, 1H, J = 7.3, 16.5 Hz), 2.58 (d, 1H, J = 16.5 Hz), 2.95–3.07 (m, 4H), 3.17 (s, 3H), 3.27–3.34 (m, 1H), 3.36–3.44 (m, 1H), 4.04 (d, 1H, J = 7.3 Hz), 7.09–7.13 (m, 1H), 7.18–7.35 (m, 5H), 7.79–7.83 (m, 1H), 7.87–7.91 (m, 1H); ¹³C NMR (CDCl₃) δ 27.1 (q), 32.0 (t), 34.6 (t), 35.3 (t), 37.2 (q), 62.8 (d), 82.2 (s), 126.97 (d), 127.00 (d), 127.9 (d), 128.2 (d), 128.5 (d), 128.7 (d), 130.1 (d), 131.0 (d), 139.0 (s), 139.3 (s), 140.0 (s), 141.1 (s), 154.1 (s), 169.6 (s). Anal. Calcd for C₂₁H₂₂N₂O₃: C, 71.98; H, 6.33; N, 7.99. Found: C, 71.95; H, 6.32; N, 7.90.

6-(5-Hydroxy-5H-dibenzo[a,d][7]annulen-5-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (11e). White solid (61 mg, 70%); R_f 0.3 (hexanes-ethyl acetate, 1:1); mp 246–248 °C; IR (ATR) 3458, 1701, 1655, 1483, 974, 935, 910, 814, 806, 795, 760, 727, 694, 673 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (d, 1H, *J* = 16.6 Hz), 2.15 (s, 3H), 2.36 (dd, 1H, *J* = 8.0, 16.6 Hz), 3.05 (d, 1H, *J* = 1.2 Hz), 3.19 (s, 3H), 4.34 (d, 1H, *J* = 8.0 Hz), 7.04 (s, 2H), 7.32–7.39 (m, 4H), 7.43– 7.50 (m, 2H), 7.72–7.76 (m, 1H), 7.81–7.85 (m, 1H); ¹³C NMR (CDCl₃) δ 27.2 (q), 31.8 (t), 37.0 (q), 53.5 (d), 80.5 (s), 124.6 (d), 124.9 (d), 127.6 (d), 127.8 (d), 129.4 (d), 129.6 (d), 129.7 (d), 129.8 (d), 131.2 (d), 132.0 (s), 132.2 (d), 133.1 (s), 138.7 (s), 140.3 (s), 154.5 (s), 169.5 (s). Anal. Calcd for C₂₁H₂₀N₂O₃: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.36; H, 5.81; N, 7.95.

6-(9-Hydroxy-9,10-dihydroanthracen-9-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**11f**). White solid (68 mg, 81%); R_f 0.4 (hexanes-ethyl acetate, 1:1); mp 250–251 °C; IR (ATR) 3337, 1709, 1636, 1522, 1481, 976, 970, 947, 937, 914, 887, 772, 760, 725, 698, 679 cm⁻¹; ¹H NMR (CDCl₃) δ 2.32 (s, 1H), 2.55 (dd, 1H, *J* = 7.6, 17.2 Hz), 2.62 (s, 3H), 2.64 (dd, 1H, *J* = 1.2, 17.2 Hz), 2.79 (s, 3H), 3.59 (dd, 1H, *J* = 1.2, 7.6 Hz), 3.97 (d, 1H, *J* = 20.1 Hz), 4.15 (d, 1H, *J* = 20.1 Hz), 7.29–7.38 (m, 6H), 7.72–7.75 (m, 1H), 7.77–7.80 (m, 1H); ¹³C NMR (CDCl₃) δ 26.6 (q), 31.7 (t), 34.4 (t), 38.0 (q), 63.8 (d), 76.0 (s), 125.9 (d), 126.1 (d), 126.7 (d), 127.0 (d), 127.5 (d), 127.8 (d), 128.0 (d), 128.1 (d), 134.6 (s), 138.1 (s), 138.3 (s), 153.3 (s), 168.6 (s). Anal. Calcd for C₂₀H₂₀N₂O₃: C, 71.41; H, 5.99; N, 8.33. Found: C, 71.47; H, 6.01; N, 8.24.

6-(9-Hydroxy-9H-xanthen-9-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**11g**). Colorless paste (74 mg, 88%); R_f 0.3 (hexanes-ethyl acetate, 1:1); IR (ATR) 3362, 1705, 1647, 1601, 1574, 1483, 1474, 914, 895, 870, 816, 754, 731, 692, 677, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.45 (dd, 1H, *J* = 1.2, 17.3 Hz), 2.52 (dd, 1H, *J* = 7.8, 17.3 Hz), 2.52 (s, 3H), 2.78 (brs, 1H), 3.00 (s, 3H), 3.59 (dd, 1H, *J* = 1.2, 7.8 Hz), 7.14–7.24 (m, 4H), 7.31–7.39 (m, 2H), 7.56–7.60 (m, 1H), 7.65–7.69 (m, 1H); ¹³C NMR (CDCl₃) δ 26.6 (q), 31.4 (t), 38.4 (q), 64.1 (d), 71.7 (s), 116.4 (d), 116.6 (d), 123.3 (s), 123.4 (d), 123.8 (d), 124.5 (s), 126.0 (d), 126.6 (d), 129.7 (d), 129.9 (d), 150.7 (s), 150.8 (s), 153.2 (s), 167.7 (s); HRMS (ESI, ion trap) calcd for C₁₉H₁₉N₂O₄ (M + H⁺) 339.1345; found 339.1342.

 $(5R^*, 6R^*)$ -6-(Hydroxydiphenylmethyl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-11h). White solid (42 mg, 50%); R_f 0.4 (hexanes-ethyl acetate, 1:1); mp 104–106 °C; IR (ATR) 3510, 3416, 3238, 1701, 1659, 1491, 976, 881, 831, 777, 762, 752, 719, 704, 694, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (d, 3H, J = 7.5 Hz), 2.22 (s, 3H), 2.71 (brs, 1H), 3.00–3.07 (m, 1H), 3.25 (s, 3H), 4.24 (d, 1H, J = 5.8 Hz), 7.24–7.38 (m, 6H), 7.42–7.46 (m, 2H), 7.49–7.53 (m, 2H); ¹³C NMR (CDCl₃) δ 13.2 (q), 27.9 (q), 37.3 (q), 39.4 (d), 66.5 (d), 81.2 (s), 125.9 (d), 126.8 (d), 127.5 (d), 127.7 (d), 128.2 (d), 128.3 (d), 143.4 (s), 143.6 (s), 154.1 (s), 173.0 (s). Anal. Calcd for C₂₀H₂₂N₂O₃: C, 70.99; H, 6.55; N, 8.28. Found: C, 70.91; H, 6.52; N, 8.10.

 $(5R^*, 6S^*)$ -6-(Hydroxydiphenylmethyl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**trans-11h**). White solid (42 mg, 50%); R_f 0.4 (hexanes-ethyl acetate, 1:1); mp 184–186 °C; IR (ATR) 3429, 1694, 1649, 1489, 999, 880, 820, 756, 746, 739, 696, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 1.34 (d, 3H, *J* = 7.3 Hz), 2.51 (brs, 1H), 2.54 (s, 3H), 2.96 (q, 1H, *J* = 7.3 Hz), 2.99 (s, 3H), 3.93 (s, 1H), 7.27–7.42 (m, 10H); ¹³C NMR (CDCl₃) δ 17.7 (q), 27.1 (q), 37.7 (d), 39.0 (d), 68.6 (d), 81.1 (s), 126.2 (d), 126.5 (d), 127.7 (d), 127.8 (d), 128.3 (d),

128.5 (d), 142.9 (s), 143.5 (s), 153.7 (s), 172.9 (s). Anal. Calcd for $C_{20}H_{22}N_2O_3$: C, 70.99; H, 6.55; N, 8.28. Found: C, 70.93; H, 6.58; N, 8.16.

 $(5R^*, 6R^*)$ -6-(Bis(4-fluorophenyl)(hydroxy)methyl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-11i). White solid (39 mg, 42%); R_f 0.55 (hexanes-ethyl acetate, 1:2); mp 220–222 °C; IR (ATR) 3397, 1701, 1655, 1599, 1504, 1483, 839, 822, 814, 804, 772, 754, 696, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.85 (d, 3H, *J* = 7.3 Hz), 2.27 (s, 3H), 2.93 (brs, 1H), 3.01–3.07 (m, 1H), 3.21 (s, 3H), 4.16 (d, 1H, *J* = 5.4 Hz), 6.98–7.03 (m, 2H), 7.11–7.16 (m, 2H), 7.21–7.26 (m, 2H), 7.46–7.51 (m, 2H); ¹³C NMR (CDCl₃) δ 13.3 (q), 27.6 (q), 37.5 (q), 39.4 (d), 66.6 (d), 80.9 (s), 115.30 (d, J_{CCF} = 21.6 Hz), 115.32 (d, J_{CCF} = 21.6 Hz), 127.7 (d, J_{CCCF} = 8.4 Hz), 128.7 (d, J_{CCCF} = 7.8 Hz), 139.17 (s, J_{CCCCF} = 3.6 Hz), 139.22 (s, J_{CCCCF} = 3.6 Hz), 154.0 (s), 162.1 (s, J_{CF} = 248.3 Hz), 162.3 (s, J_{CF} = 248.3 Hz), 172.8 (s). Anal. Calcd for $C_{20}H_{20}F_2N_2O_3$: C, 64.16; H, 5.38; N, 7.48. Found: C, 64.13; H, 5.36; N, 7.45.

 $(5R^*, 6S^*)$ -6-(Bis(4-fluorophenyl)(hydroxy)methyl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-11i). White solid (32 mg, 34%); R_f 0.6 (hexanes-ethyl acetate, 1:2); mp 230– 231 °C; IR (ATR) 3410, 1711, 1647, 1601, 1503, 1497, 1489, 997, 982, 880, 837, 824, 806, 772, 758, 667, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 1.35 (d, 3H, J = 7.4 Hz), 2.58 (s, 3H), 2.86 (s, 1H), 2.88 (q, 1H, J = 7.4 Hz), 2.96 (s, 3H), 3.86 (s, 1H), 7.00–7.10 (m, 4H), 7.26–7.30 (m, 2H), 7.31–7.36 (m, 2H); ¹³C NMR (CDCl₃) δ 17.8 (q), 27.2 (q), 37.7 (d), 39.3 (q), 68.7 (d), 80.7 (s), 115.5 (d, J_{CCF} = 21.6 Hz), 115.6 (d, J_{CCF} = 21.6 Hz), 128.2 (d, J_{CCCF} = 8.4 Hz), 128.4 (d, J_{CCCF} = 8.4 Hz), 138.5 (s, J_{CCCCF} = 2.7 Hz), 139.1 (s, J_{CCCCF} = 2.7 Hz), 153.5 (s), 162.2 (s, J_{CF} = 248.9 Hz), 162.3 (s, J_{CF} = 248.3 Hz), 172.6 (s). Anal. Calcd for $C_{20}H_{20}F_2N_2O_3$: C, 64.16; H, 5.38; N, 7.48. Found: C, 64.10; H, 5.38; N, 7.44.

 $(5R^*, 6R^*)$ -6-(*Hydroxybis*(4-*methoxyphenyl*)*methyl*)-1,3,5*trimethyldihydropyrimidine-2,4*(1*H*,3*H*)-*dione* (*cis*-11*j*). Colorless paste (59 mg, 59%); *R*_f 0.4 (hexanes–ethyl acetate, 1:2); IR (ATR) 3379, 1699, 1647, 1607, 1578, 1508, 1489, 908, 881, 822, 799, 789, 772, 758, 727, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (d, 3H, *J* = 6.9 Hz), 2.28 (s, 3H), 2.61 (brs, 1H), 2.98–3.05 (m, 1H), 3.23 (s, 3H), 3.77 (s, 3H), 3.84 (s, 3H), 4.13 (d, 1H, *J* = 5.9 Hz), 6.80–6.85 (m, 2H), 6.92–6.96 (m, 2H), 7.15–7.19 (m, 2H), 7.37–7.41 (m, 2H); ¹³C NMR (CDCl₃) δ 13.2 (q), 27.5 (q), 37.3 (q), 39.4 (d), 55.1 (q), 55.2 (q), 66.6 (d), 80.7 (s), 113.4 (d), 113.5 (d), 127.1 (d), 128.1 (d), 135.8 (s), 135.9 (s), 154,1 (s), 158.6 (s), 158.9 (s), 173.0 (s); HRMS (ESI, ion trap) calcd for C₁₂₁H₂₇N₂O₅ (M + H⁺) 399.1920; found 399.1918.

 $(5R^*, 6R^*)$ -6-(*Methoxybis*(4-*methoxyphenyl*)*methyl*)-1,3,5*trimethyldihydropyrimidine-2,4*(1*H*,3*H*)-*dione* (*cis*-11*j*'). White solid (54 mg, 52%); *R*_f 0.3 (hexanes–ethyl acetate, 1:1); mp 193–195 °C; IR (ATR) 1705, 1659, 1609, 1576, 1508, 1489, 988, 964, 943, 903, 885, 843, 827, 806, 799, 777, 764, 752, 729, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 1.00 (d, 3H, *J* = 7.5 Hz), 2.47 (s, 3H), 2.67 (s, 3H), 2.88–2.96 (m, 1H), 3.17 (s, 3H), 3.83 (s, 3H), 3.84 (s, 3H), 4.41 (d, 1H, *J* = 6.7 Hz), 6.87– 6.95 (m, 4H), 7.32–7.37 (m, 2H), 7.40–7.46 (m, 2H); ¹³C NMR (CDCl₃) δ 13.4 (q), 27.2 (q), 39.2 (d), 39.9 (q), 50.3 (q), 55.17 (q), 55.22 (q), 67.2 (d), 86.6 (s), 113.2 (d), 113.4 (d), 127.8 (s), 129.1 (s), 130.1 (d), 130.7 (d), 153.7 (s), 159.0 (s), 159.3 (s), 170.8 (s). Anal. Calcd for C₂₃H₂₈N₂O₅: C, 66.97; H, 6.84; N, 6.79. Found: C, 66.95; H, 6.87; N, 6.72.

 $(5R^*, 6S^*)$ -6-(Hydroxybis(4-methoxyphenyl)methyl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-11j). White solid (19 mg, 19%); R_f 0.45 (hexanes-ethyl acetate, 1:2); mp 217– 218 °C; IR (ATR) 3385, 1697, 1647, 1609, 1582, 1508, 1489, 910, 891, 829, 802, 756, 729, 683, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.34 (d, 3H, *J* = 7.2 Hz), 2.49 (brs, 1H), 2.62, (s, 3H), 2.93 (q, 1H, *J* = 7.2 Hz), 2.95 (s, 3H), 3.79 (s, 3H), 3.81 (s, 3H), 3.83 (s, 1H), 6.83–6.86 (m, 2H), 6.87–6.91 (m, 2H), 7.20–7.24 (m, 2H), 7.25–7.29 (m, 2H); ¹³C NMR (CDCl₃) δ 17.8 (q), 27.2 (q), 37.8 (d), 39.2 (q), 55.2 (q), 55.3 (q), 68.8 (d), 80.8 (s), 113.7 (d), 113.8 (d), 127.7 (d), 127.9 (d), 134.9 (s), 135.7 (s), 153.7 (s), 159.07 (s), 159.10 (s), 172.9 (s). Anal. Calcd for C₂₂H₂₆N₂O₅: C, 66.32; H, 6.58; N, 7.03. Found: C, 66.28; H, 6.57; N, 6.96. $(5R^*, 6S^*)$ -5-Fluoro-6-(hydroxydiphenylmethyl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-11k). White solid (78 mg, 91%); R_f 0.35 (hexanes-ethyl acetate, 1:1); mp 240–242 °C; IR (ATR) 3451, 3381, 1728, 1653, 1489, 951, 914, 899, 866, 793, 770, 752, 727, 698 cm⁻¹; ¹H NMR (CDCl₃) δ 2.30 (s, 3H), 2.65 (s, 1H), 3.16 (s, 3H), 4.71 (d, 1H, *J* = 6.9 Hz), 5.35 (dd, 1H, *J* = 6.9 Hz, *J*_{HF} = 47.1 Hz), 7.21–7.45 (m, 10H); ¹³C NMR (CDCl₃) δ 27.5 (q), 38.2 (q), 64.0 (d, *J*_{CCF} = 21.6 Hz), 80.7 (s), 83.1 (d, *J*_{CF} = 196.1 Hz), 126.1 (d), 126.8 (d), 127.9 (d), 128.0 (d), 128.4 (d), 143.3 (s), 143.6 (s), 152.8 (s), 166.8 (s). Anal. Calcd for C₁₉H₁₉FN₂O₃: C, 66.66; H, 5.59; N, 8.18. Found: C, 66.73; H, 5.66; N, 8.05.

 $(5R^*,6S^*)$ -6-(Bis(4-fluorophenyl)(hydroxy)methyl)-5-fluoro-1,3dimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-11l). White solid (88 mg, 93%); R_f 0.25 (hexanes-ethyl acetate, 1:1); mp 235 °C; IR (ATR) 3402, 1727, 1649, 1603, 1506, 1489, 993, 930, 905, 870, 831, 810, 773, 756, 733, 716 cm⁻¹; ¹H NMR (CDCl₃) δ 2.34 (s, 3H), 2.69 (s, 1H), 3.17 (s, 3H), 4.67 (d, 1H, J = 6.9 Hz), 5.41 (dd, 1H, J = 6.9 Hz, J_{HF} = 47.0 Hz), 6.99-7.04 (m, 2H), 7.05-7.11 (m, 2H), 7.18-7.22 (m, 2H), 7.38-7.43 (m, 2H); ¹³C NMR (CDCl₃) δ 26.0 (q), 37.0 (q), 62.5 (d, J_{CCF} = 21.0 Hz), 78.2 (s), 81.8 (d, J_{CF} = 195.5 Hz), 113.2 (d, J_{CCF} = 21.0 Hz), 113.6 (d, J_{CCF} = 21.6 Hz), 127.4 (d, J_{CCCF} = 7.2 Hz), 128.0 (d, J_{CCCF} = 8.4 Hz), 138.8 (s), 139.1 (s, J_{CCCF} = 2.4 Hz), 151.8 (s), 160.3 (s, J_{CF} = 245.3 Hz), 160.7 (s, J_{CF} = 246.5 Hz), 165.8 (s, J_{CCF} = 21.6 Hz). Anal. Calcd for C₁₉H₁₇F₃N₂O₃: C, 60.32; H, 4.53; N, 7.40. Found: C, 60.29; H, 4.54; N, 7.26.

 $(5R^*,6S^*)$ -5-Fluoro-6-(hydroxybis(4-methoxyphenyl)methyl)-1,3dimethyldihydropyrimidine-2,4(1H,3H)-dione (*cis*-11m). White solid (80 mg, 80%); R_f 0.3 (hexanes—ethyl acetate, 1:1); mp 245—246 °C; IR (ATR) 3478, 1724, 1653, 1609, 1580, 1508, 1489, 995, 905, 866, 831, 824, 810, 795, 781, 754, 737 cm⁻¹; ¹H NMR (CDCl₃) δ 2.34 (s, 3H), 2.62 (brs, 1H), 3.16 (s, 3H), 3.78 (s), 3.81 (s), 4.63 (d, 1H, *J* = 6.9 Hz), 5.38 (dd, 1H, *J* = 6.9 Hz, J_{HF} = 47.0 Hz), 6.81—6.85 (m, 2H), 6.87—6.91 (m, 2H), 7.12—7.16 (m, 2H), 7.31—7.35 (m, 2H); ¹³C NMR (CDCl₃) δ 26.1 (q), 37.0 (q), 54.1 (q), 62.8 (d, J_{CCF} = 20.4 Hz), 78.3 (s), 82.0 (d, J_{CF} = 195.5 Hz), 111.8 (d), 112.1 (d), 126.7 (d), 127.3 (d), 135.3 (s), 135.6 (s). 151.9 (s), 157.1 (s), 157.5 (s), 166.1 (s, J_{CCF} = 21.6 Hz). Anal. Calcd for C₂₁H₂₃FN₂O₅: C, 62.68; H, 5.76; N, 6.96. Found: C, 62.70; H, 5.77; N, 6.89.

 $(5R^*,6S^*)$ -5-Fluoro-6-(5-hydroxy-10,11-dihydro-5H-dibenzo[*a*,*d*]-[7]annulen-5-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (*cis*-11*n*). White solid (77 mg, 84%); *R*_f 0.4 (hexanes–ethyl acetate, 1:1); mp 242–244 °C; IR (ATR) 3497, 1713, 1670, 1506, 1477, 924, 910, 893, 870, 864, 789, 775, 762, 752, 723, 712, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.33 (s, 3H), 2.69 (brd, 1H, *J* = 2.4 Hz), 2.97–3.12 (m, 2H), 3.24 (s, 3H), 3.29–3.36 (m, 1H), 3.47–3.55 (m, 1H), 4.61 (dd, 1H, *J* = 2.3, 6.7 Hz), 5.13 (dd, 1H, *J* = 6.7 Hz, *J*_{HF} = 46.4 Hz), 7.08–7.13 (m, 1H), 7.18–7.32 (m, 5H), 7.72–7.76 (m, 1H), 7.76–7.82 (m, 1H); ¹³C NMR (CDCl₃) δ 26.3 (q), 32.9 (t), 34.1 (t), 36.2 (q), 64.1 (d, *J*_{CCF} = 19.2 Hz), 79.2 (s), 82.7 (d, *J*_{CF} = 198.5 Hz), 125.0 (d), 125.4 (d), 126.91 (d), 126.94 (d), 127.6 (d), 128.1 (d), 128.5 (d), 130.3 (d), 137.5 (s), 137.6 (s), 139.4 (s), 141.3 (s), 152.2 (s), 166.4 (s, *J*_{CCF} = 20.4 Hz). Anal. Calcd for C₂₁H₂₁FN₂O₃: C, 68.47; H, 5.75; N, 7.60. Found: C, 68.49; H, 5.78; N, 7.52.

N-Methyl-2-(3-methyl-2-oxo-5,5-diphenyloxazolidin-4-yl)acetamide (**12a**). White solid (71 mg, 87%); R_f 0.3 (ethyl acetate); mp 144–145 °C; IR (ATR) 3366, 1746, 1661, 1545, 1495, 986, 945, 928, 918, 841, 797, 766, 760, 754, 700, 671, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03 (dd, 1H, J = 8.3, 15.2 Hz), 2.31 (dd, 1H, J = 5.0, 15.2 Hz), 2.50 (d, 3H, J = 5.0 Hz), 2.87 (s, 3H), 4.73 (brs, 1H), 5.08 (dd, 1H, J = 5.0, 8.3 Hz), 7.22–7.44 (m, 8H), 7.65–7.69 (m, 2H); ¹³C NMR (CDCl₃) δ 26.3 (q), 29.5 (q), 36.8 (t), 62.3 (d), 86.7 (s), 126.1 (d), 126.8 (d), 127.9 (d), 128.0 (d), 128.47 (d), 128.53 (d), 138.5 (s), 142.1 (s), 156.4 (s), 169.7 (s). Anal. Calcd for C₁₉H₂₀N₂O₃: C, 70.35; H, 6.21; N, 8.64. Found: C, 70.31; H, 6.22; N, 8.55.

2-(5,5-Bis(4-fluorophenyl)-3-methyl-2-oxooxazolidin-4-yl)-N-methylacetamide (**12b**). White solid (62 mg, 69%); R_f 0.2 (ethyl acetate); mp 197–199 °C; IR (ATR) 3275, 1748, 1670, 1645, 1601, 1578, 1506, 1477, 957, 926, 849, 835, 812, 795, 775, 758, 723, 714, 706, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 2.00 (dd, 1H, J = 8.5, 15.3 Hz), 2.36 (dd, 1H, J = 4.9, 15.3 Hz), 2.55 (d, 3H, J = 5.0 Hz), 2.87 (s, 3H), 5.05

(dd, 1H, *J* = 4.9, 8.5 Hz), 5.06 (brs, 1H), 6.95–7.01 (m, 2H), 7.08–7.13 (m, 2H), 7.25–7.30 (m, 2H), 7.63–7.68 (m, 2H); ¹³C NMR (CDCl₃) δ 26.2 (q), 29.5 (q), 36.5 (t), 62.5 (d), 85.9 (s), 114.9 (d, *J*_{CCF} = 21.6 Hz), 115.6 (d, *J*_{CCF} = 21.6 Hz), 128.0 (d, *J*_{CCCF} = 8.4 Hz), 129.0 (d, *J*_{CCCF} = 8.4 Hz), 134.3 (s, *J*_{CCCCF} = 2.7 Hz), 137.9 (s, *J*_{CCCCF} = 3.3 Hz), 156.0 (s), 162.2 (s, *J*_{CF} = 249.2 Hz), 162.6 (s, *J*_{CF} = 248.6 Hz), 169.4 (s). Anal. Calcd for C₁₉H₁₈F₂N₂O₃: C, 63.33; H, 5.03; N, 7.77. Found: C, 63.29; H, 5.04; N, 7.72.

2-(5,5-Bis(4-methoxyphenyl)-3-methyl-2-oxooxazolidin-4-yl)-Nmethylacetamide (12c). White solid (80 mg, 83%); R_f 0.15 (hexanes– ethyl acetate, 1:2); mp 105–107 °C; IR (ATR) 3350, 1749, 1653, 1609, 1578, 1558, 1512, 988, 949, 930, 914, 903, 837, 824, 775, 756, 740, 729, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (dd, 1H, *J* = 8.1, 15.0 Hz), 2.30 (dd, 1H, *J* = 5.2, 15.0 Hz), 2.53 (d, 3H, *J* = 4.9 Hz), 2.87 (s, 3H), 3.76 (s, 3H), 3.81 (s, 3H), 5.01 (dd, 1H, *J* = 5.2, 8.1 Hz), 5.04 (q, 1H, *J* = 4.9 Hz), 6.78–6.82 (m, 2H), 6.89–6.94 (m, 2H), 7.17–7.22 (m, 2H), 7.53–7.57 (m, 2H); ¹³C NMR (CDCl₃) δ 26.2 (q), 29.5 (q), 36.9 (t), 55.1 (q), 55.2 (q), 62.5 (d), 86.5 (s), 113.2 (d), 113.7 (d), 127.4 (d), 128.2 (d), 131.0 (s), 134.4 (s), 156.6 (s), 159.0 (s), 159.4 (s), 169.8 (s). Anal. Calcd for C₂₁H₂₄N₂O₅: C, 65.61; H, 6.29; N, 7.29. Found: C, 65.54; H, 6.30; N, 7.22.

N-Methyl-2-(3'-methyl-2'-oxo-10,11-dihydrospiro[*dibenzo*[*a,d*]-[7]*annulene-5,5'-oxazolidin*]-4'-*yl*)*acetamide* (**12d**). Colorless paste (74 mg, 84%); *R*_f 0.2 (hexanes–ethyl acetate, 1:2); IR (ATR) 3310, 1748, 1647, 1558, 1541, 1483, 999, 908, 772, 725, 667, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 2.13–2.22 (m, 2H), 2.60 (d, 3H, *J* = 5.0 Hz), 2.79 (s, 3H), 2.90–3.02 (m, 2H), 3.23–3.31 (m, 1H), 3.62–3.71 (m, 1H), 4.71 (t, 2H, *J* = 6.0 Hz), 5.14 (brs, 1H), 7.10–7.15 (m, 1H), 7.20–7.29 (m, 5H), 7.65–7.68 (m, 1H), 7.81–7.85 (m, 1H); ¹³C NMR (CDCl₃) δ 26.4 (q), 29.9 (q), 31.4 (t), 33.3 (t), 38.4 (t), 66.2 (d), 86.0 (s), 124.0 (d), 126.19 (d), 126.20 (d), 126.4 (d), 128.47 (d), 128.54 (d), 130.6 (d), 131.3 (d), 135.0 (s), 137.7 (s), 137.9 (s), 140.7 (s), 156.4 (s), 169.9 (s); HRMS (ESI, ion trap) calcd for C₂₁H₂₃N₂O₃ (M + H⁺) 351.1709; found 351.1706.

N-*Methyl*-2-(3'-*methyl*-2'-*oxospiro*[*dibenzo*[*a*,*d*][7]annulene-5,5'-*oxazolidin*]-4'-*yl*)*acetamide* (**12e**). White solid (74 mg, 85%); *R*_f 0.25 (ethyl acetate); mp 193–195 °C; IR (ATR) 3316, 1748, 1647, 1558, 1485, 999, 955, 908, 885, 858, 800, 772, 725, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.76–1.82 (m, 1H), 1.88 (dd, 1H, *J* = 3.6, 14.9 Hz), 2.67 (d, 3H, *J* = 4.7 Hz), 2.70 (s, 3H), 4.34 (dd, 1H, *J* = 3.6, 8.6 Hz), 5.34 (brs, 1H), 6.99 (d, 1H, *J* = 11.7 Hz), 7.17 (d, 1H, *J* = 11.7 Hz), 7.31–7.38 (m, 3H), 7.39–7.46 (m, 3H), 7.80–7.84 (m, 1H), 7.85–7.89 (m, 1H); ¹³C NMR (CDCl₃) δ 26.2 (q), 30.2 (q), 38.2 (t), 62.0 (d), 84.9 (s), 122.9 (d), 124.1 (d), 127.5 (d), 127.6 (d), 128.7 (d), 128.8 (d), 129.0 (d), 129.3 (d), 130.7 (d), 131.5 (s), 131.8 (d), 132.2 (s), 135.1 (s), 139.6 (s), 156.2 (s), 169.8 (s). Anal. Calcd for C₂₁H₂₀N₂O₃: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.32; H, 5.78; N, 7.91.

N-*Methyl*-2-(3-*methyl*-2-oxo-5,5-*diphenyloxazolidin*-4-*yl*)propanamide (**12h**). Colorless paste (49 mg, 58%, *erythro:threo* = 70:30 dr); R_f 0.3, 0.35 (acetate); IR (ATR) 3339, 1740, 1647, 1541, 1494, 912, 893, 756, 729, 696, 671, 646, 617, 666 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (d, 0.9H, *J* = 6.9 Hz), 1.09 (d, 2.1H, *J* = 7.5 Hz), 2.40– 2.47 (m, 0.7H), 2.53 (d, 2.1H, *J* = 4.6 Hz), 2.59 (d, 0.9H, *J* = 4.6 Hz), 2.67–2.74 (m, 0.3H), 2.88 (s, 0.9H), 2.92 (s, 2.1H), 4.96 (brs, 0.9H), 5.02 (dd, 0.3H, *J* = 2.9, 5.1 Hz), 5.09 (d, 0.7H, *J* = 5.7 Hz), 5.28 (brs, 0.3H), 7.18–7.46 (m, 8H), 7.63–7.68 (m, 2H); ¹³C NMR (CDCl₃) δ 11.2 (q), 13.3 (q), 26.48 (q), 26.51 (q), 30.3 (q), 32.5 (q), 40.6 (d), 42.7 (d), 66.0 (d), 67.2 (d), 87.1 (s), 87.7 (s), 125.5 (d), 125.8 (d), 126.8 (d), 127.2 (d), 127.77 (d), 127.81 (d), 128.11 (d), 128.30 (d), 128.34 (d), 128.6 (d), 137.8 (s), 138.3 (s), 143.1 (s), 143.6 (s), 156.8 (s), 157.2 (s), 172.7 (s), 174.1 (s); HRMS (ESI, ion trap) calcd for C₂₀H₂₃N₂O₃ (M + H⁺) 339.1709; found 339.1707.

2-(5,5-Bis(4-fluorophenyl)-3-methyl-2-oxooxazolidin-4-yl)-Nmethylpropanamide (12i). Colorless paste (51 mg, 54%, erythro:threo = 78:22 dr); R_f 0.15 (hexanes-ethyl acetate, 1:2); IR (ATR) 3339, 1744, 1647, 1601, 1541, 1508, 908, 899, 831, 806, 762, 754, 727, 677, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86 (d, 0.66H, *J* = 6.9 Hz), 1.11 (d, 2.34H, *J* = 6.9 Hz), 2.33–2.40 (m, 0.78H), 2.55 (d, 2.34H, *J* = 4.6 Hz), 2.61 (d, 0.66H, *J* = 4.9 Hz), 2.68–2.74 (m, 0.22H), 2.87 (s, 0.66H), 2.93 (s, 2.34H), 5.00 (brs, 0,78H), 5.02 (d, 0.78H, *J* = 6.9 Hz), 5.07 (d, 0.22H, J = 4.8 Hz), 5.29–5.33 (m, 0.22H), 6.94–7.02 (m, 2H), 7.04–7.11 (m, 2H), 7.31–7.42 (m, 2H), 7.61–7.67 (m, 2H); ¹³C NMR (CDCl₃) δ major; 13.8 (q), 26.4 (q), 32.8 (q), 42.8 (d), 66.3 (d), 87.1 (s), 115.0 (d, $J_{CCF} = 21.6$ Hz), 115.6 (d, $J_{CCF} = 21.6$ Hz), 127.8 (d, $J_{CCCF} = 8.4$ Hz), 129.0 (d, $J_{CCCF} = 8.4$ Hz), 134.0 (s, $J_{CCCF} = 2.7$ Hz), 138.7 (s, $J_{CCCCF} = 2.7$ Hz), 156.9 (s), 162.1 (s, $J_{CF} = 249.2$ Hz), 162.5 (s, $J_{CF} = 248.6$ Hz), 173.8 (s), minor; 14.1 (q), 26.5 (q), 30.0 (q), 40.2 (d), 67.0 (d), 86.3 (s), 114.7 (d, $J_{CCF} = 21.6$ Hz), 115.6 (d, $J_{CCF} = 21.6$ Hz), 127.3 (d, $J_{CCCF} = 8.4$ Hz), 133.5 (s, $J_{CCCCF} = 2.7$ Hz), 139.5 (s, $J_{CCCCF} = 2.7$ Hz), 156.4 (s), 162.0 (s, $J_{CF} = 248.6$ Hz), 172.5 (s); HRMS (ESI, ion trap) calcd for $C_{20}H_{21}F_2N_2O_3$ (M + H⁺) 375.1520; found 375.1518.

2-(5,5-Bis(4-methoxyphenyl)-3-methyl-2-oxooxazolidin-4-yl)-Nmethylpropanamide (12j). Colorless paste (54 mg, 54%, erythro:threo = 45:55 dr); $R_f 0.2$ (ethyl acetate); IR (ATR) 3321, 1740, 1647, 1609, 1578, 1541, 1510, 989, 899, 827, 789, 756, 727, 677, 669, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 0.83 (d, 1.65H, J = 6.9 Hz), 1.10 (d, 1.35H, J = 6.9 Hz), 2.36–2.43 (m, 0.45H), 2.53 (d, 1.35H, J = 4.6 Hz), 2.62 (d, 1.65H, J = 5.2 Hz, 2.64–2.70 (m, 0.55H), 2.87 (s, 1.65H), 2.93 (s, 1.35H), 3.757 (s, 1.65H), 3.762 (s, 1.35H), 3.79 (s, 3H), 4.87 (d, 0.55H, J = 5.2 Hz), 4.91 (brs, 1H), 4.97 (d, 0.45H, J = 6.3 Hz), 5.45 (brs, 0.55H), 6.76-6.82 (m, 2H), 6.87-6.92 (m, 2H), 7.25-7.34 (m, 2H), 7.52-7.57 (m, 2H); ¹³C NMR (CDCl₃) δ 12.0 (q), 13.4 (q), 26.36 (q), 26.40 (q), 30.6 (q), 32.5 (q), 40.8 (d), 42.8 (d), 55.09 (q), 55.13 (q), 55.16 (q), 55.17 (q), 66.2 (d), 67.5 (d), 87.2 (s), 87.6 (s), 113.0 (d), 113.2 (d), 113.7 (d), 126.9 (d), 127.1 (d), 128.2 (d), 128.7 (d), 130.2 (s), 130.7 (s), 135.4 (s), 135.6 (s), 157.1 (s), 157.3 (s), 158.8 (s), 159.0 (s), 159.29 (s), 159.31 (s), 173.2 (s), 174.2 (s); HRMS (ESI, ion trap) calcd for $C_{22}H_{27}N_2O_5$ (M + H⁺) 399.1920; found 399.1918.

(*R**)-2-*F*Iuoro-*N*-methyl-2-((*S**)-3-methyl-2-oxo-5,5-diphenyloxazolidin-4-yl)acetamide (**threo-12k**). White solid (54 mg, 63%); *R*_f 0.6 (hexanes-ethyl acetate, 1:5); mp 204–205 °C; IR (ATR) 3358, 1753, 1680, 1545, 1493, 932, 849, 822, 793, 773, 760, 752, 700, 671 cm⁻¹; ¹H NMR (CDCl₃) δ 2.86 (d, 3H, *J* = 4.7 Hz), 2.87 (s, 3H), 4.59 (d, 1H, *J*_{HF} = 46.5 Hz), 5.17 (d, 1H, *J*_{HF} = 27.1 Hz), 6.48 (brs, 1H), 7.27–7.44 (m, 8H), 7.53–7.58 (m, 2H); ¹³C NMR (125 MHz; CDCl₃) δ 25.9 (q), 30.2 (q), 64.8 (d, *J*_{CCF} = 16.5 Hz), 86.3 (s), 87.6 (d, *J*_{CF} = 198.2 Hz), 125.7 (d), 126.1 (d), 128.1 (d), 128.4 (d), 128.5 (d), 128.6 (d), 137.9 (s), 142.0 (s), 156.7 (s), 168.1 (s, *J*_{CF} = 19.2 Hz). Anal. Calcd for C₁₉H₁₉FN₂O₃: C, 66.66; H, 5.59; N, 8.18. Found: C, 66.68; H, 5.62; N, 8.11.

(*R**)-2-((*S**)-5,5-*Bis*(4-fluorophenyl)-3-methyl-2-oxooxazolidin-4yl)-2-fluoro-*N*-methylacetamide (threo-12l). White solid (46 mg, 49%); *R*_f 0.35 (hexanes-ethyl acetate, 1:1); mp 221–222 °C; IR (ATR) 3387, 1763, 1719, 1670, 1636, 1603, 1549, 1508, 1474, 962, 955, 941, 928, 858, 847, 837, 822, 812, 804, 787, 756, 727, 685, 669, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 2.876 (d, 3H, *J* = 4.4 Hz), 2.879 (s, 3H), 4.53 (d, 1H, *J*_{HF} = 46.3 Hz), 5.10 (d, 1H, *J*_{HF} = 26.9 Hz), 6.47 (brs, 1H), 7.02–7.12 (m, 4H), 7.34–7.40 (m, 2H), 7.48–7.54 (m, 2H); ¹³C NMR (CDCl₃) δ 26.1 (q), 30.3 (q), 64.8 (d, *J*_{CCF} = 16.8 Hz), 85.7 (s), 87.6 (d, *J*_{CF} = 197.9 Hz), 115.6 (d, *J*_{CCF} = 22.8 Hz), 115.8 (d, *J*_{CCF} = 21.6 Hz), 127.8 (d, *J*_{CCCF} = 8.4 Hz), 128.2 (d, *J*_{CCCF} = 8.4 Hz), 133.6 (s, *J*_{CCCCF} = 3.6 Hz), 137.6 (s, *J*_{CCCCF} = 3.6 Hz), 156.4 (s), 162.4 (s, *J*_{CF} = 249.5 Hz), 162.7 (s, *J*_{CF} = 249.5 Hz), 167.8 (s, *J*_{CCF} = 18.0 Hz). Anal. Calcd for C₁₉H₁₇F₃N₂O₃: C, 60.32; H, 4.53; N, 7.40. Found: C, 60.25; H, 4.52; N, 7.22.

(*R**)-2-((*S**)-5,5-*B*is(4-methoxyphenyl)-3-methyl-2-oxooxazolidin-4-yl)-2-fluoro-*N*-methylacetamide (threo-12m). Colorless paste (82 mg, 82%); *R*_f 0.4 (hexanes-ethyl acetate, 1:5); IR (ATR) 3337, 1751, 1672, 1609, 1582, 1541, 1510, 991, 849, 829, 820, 800, 781, 758, 731, 692, 662 cm⁻¹; ¹H NMR (CDCl₃) δ 2.86 (d, 3H, *J* = 4.9 Hz), 2.87 (s, 3H), 3.78 (s, 3H), 3.80 (s, 3H), 4.56 (d, 1H, *J*_{HF} = 46.3 Hz), 5.07 (d, 1H, *J*_{HF} = 26.9 Hz), 6.47 (brs, 1H), 6.83-6.91 (m, 4H), 7.27-7.33 (m, 2H), 7.41-7.46 (m, 2H); ¹³C NMR (CDCl₃) δ 26.0 (q), 30.2 (q), 55.1 (q), 55.2 (q), 64.9 (d, *J*_{CCF} = 16.5 Hz), 86.3 (s), 87.8 (d, *J*_{CF} = 197.9 Hz), 113.6 (d), 113.8 (d), 127.2 (d), 127.6 (d), 130.2 (s), 134.2 (s), 156.9 (s), 159.2 (s), 159.5 (s), 168.2 (s, *J*_{CCF} = 19.2 Hz); HRMS (ESI, ion trap) calcd for C₂₁H₂₄FN₂O₅ (M + H⁺) 403.1669; found 403.1666. (*R**)-2-Fluoro-*N*-methyl-2-((*S**)-3'-methyl-2'-oxo-10,11-dihydro-

(R*)-2-Fluoro-N-methyl-2-((S*)-3'-methyl-2'-oxo-10,11-dihydrospiro[dibenzo[a,d][7]annulene-5,5'-oxazolidin]-4'-yl)acetamide

(threo-12n). White solid (76 mg, 82%); R_f 0.25 (hexanes-ethyl acetate, 1:1); mp 228–229 °C; IR (ATR) 3374, 1738, 1682, 1595, 1543, 1483, 793, 779, 760, 752, 741, 706, 665 cm⁻¹; ¹H NMR (CDCl₃) δ 2.78 (s, 3H), 2.85 (d, 3H, *J* = 5.0 Hz), 2.98–3.09 (m, 2H), 3.32–3.40 (m, 1H), 3.49–3.57 (m, 1H), 4.78 (d, 1H, *J*_{HF} = 46.3 Hz), 4.94 (d, 1H, *J*_{HF} = 25.2 Hz), 6.57 (brs, 1H), 7.15–7.19 (m, 1H), 7.19–7.30 (m, 5H), 7.62–7.66 (m, 1H), 7.84–7.88 (m, 1H); ¹³C NMR (CDCl₃) δ 25.9 (q), 30.2 (q), 31.8 (t), 32.9 (t), 68.7 (d, *J*_{CCF} = 16.8 Hz), 85.4 (s), 87.3 (d, *J*_{CF} = 198.8 Hz), 124.0 (d), 126.37 (d), 126.44 (d), 126.6 (d), 128.6 (d), 128.8 (d), 130.8 (d), 131.0 (d), 134.8 (s), 136.90 (s), 136.92 (s), 140.3 (s), 156.9 (s), 168.2 (s, *J*_{CCF} = 19.2 Hz). Anal. Calcd for C₂₁H₂₁FN₂O₃: C, 68.47; H, 5.75; N, 7.60. Found: C, 68.44; H, 5.76; N, 7.54.

6-(1-Hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**erythro-13d**). Colorless paste (66 mg, 91%); R_f 0.35 (hexanes–ethyl acetate, 1:2); IR (ATR) 3406, 1701, 1643, 1483, 988, 970, 926, 901, 756, 729, 702, 677, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.75–1.85 (m, 3H), 1.97–2.04 (m, 1H), 2.13–2.19 (m, 1H), 2.72 (s, 3H), 2.74–2.81 (m, 3H), 3.09 (s, 3H), 3.18 (dd, 1H, *J* = 1.0, 16.8 Hz), 3.77 (dd, 1H, *J* = 1.0, 8.0 Hz), 7.10–7.13 (m, 1H), 7.21–7.26 (m, 2H), 7.56–7.59 (m, 1H); ¹³C NMR (CDCl₃) δ 19.4 (t), 27.0 (q), 29.3 (t), 31.2 (t), 33.3 (t), 37.8 (q), 61.3 (d), 73.9 (s), 126.0 (d), 127.1 (d), 127.8 (d), 129.0 (d), 137.7 (s), 139.0 (s), 153.9 (s), 169.5 (s); HRMS (ESI, ion trap) calcd for C₁₆H₂₁N₂O₃ (M + H⁺) 289.1552; found 289.1551.

6-(1-Hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**threo-13d**). Colorless paste (47 mg, 65%); R_f 0.2 (hexanes–ethyl acetate, 1:2); IR (ATR) 3420, 1701, 1647, 1485, 984, 972, 924, 756, 727, 679, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.74–1.96 (m, 4H), 2.13–2.19 (m, 1H), 2.63 (s, 1H), 2.67 (s, 1H), 2.74–2.86 (m, 3H), 3.20 (s, 3H), 3.75 (d, 1H, *J* = 7.7 Hz), 7.09–7.13 (m, 1H), 7.21–7.26 (m, 2H), 7.37–7.41 (m, 1H); ¹³C NMR (CDCl₃) δ 19.4 (t), 27.2 (q), 29.0 (t), 32.3 (t), 33.6 (t), 38.0 (q), 60.8 (d), 75.7 (s), 126.4 (d), 126.7 (d), 128.0 (d), 129.1 (d), 136.9 (s), 138.4 (s), 153.9 (s), 169.6 (s); HRMS (ESI, ion trap) calcd for C₁₆H₂₁N₂O₃ (M + H⁺) 289.1552; found 289.1549.

(*R**)-6-((*Ś**)-1-*Hydroxy-2,3-dihydro-1H-inden-1-yl*)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (*erythro-13e*). White solid (53 mg, 78%); *R_f* 0.3 (hexanes-ethyl acetate, 1:2); mp 173–175 °C; IR (ATR) 3424, 1686, 1647, 1508, 1474, 988, 970, 945, 916, 907, 810, 789, 762, 752, 727, 683, 669, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03–2.11 (m, 1H), 2.23 (brs, 1H), 2.40–2.46 (m, 1H), 2.70 (s, 3H), 2.76–2.80 (m, 2H), 2.90–3.00 (m, 2H), 3.15 (s, 3H), 3.72 (dd, 1H, *J* = 3.9, 5.7 Hz), 7.21–7.30 (m, 4H); ¹³C NMR (CDCl₃) δ 26.6 (q), 29.7 (t), 32.0 (t), 38.5 (q), 39.5 (t), 61.2 (d), 86.3 (s), 124.0 (d), 125.3 (d), 126.8 (d), 129.2 (d), 142.8 (s), 143.3 (s), 153.6 (s), 168.2 (s). Anal. Calcd for C₁₅H₁₈N₂O₃: C, 65.68; H, 6.61; N, 10.21. Found: C, 65.64; H, 6.59; N, 10.10.

(*R**)-6-((*R**)-1-Hydroxy-2,3-dihydro-1H-inden-1-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**threo-13e**). Colorless paste (54 mg, 79%); *R*_f 0.45 (hexanes–ethyl acetate, 1:5); IR (ATR) 3358, 1701, 1647, 970, 945, 916, 907, 808, 779, 760, 729, 712, 683 cm⁻¹; ¹H NMR (CDCl₃) δ 1.97–2.05 (m, 1H), 2.29 (brs, 1H), 2.35–2.41 (m, 1H), 2.69 (s, 3H), 2.79–2.87 (m, 2H), 2.91–2.99 (m, 1H), 3.09 (s, 3H), 3.44 (dd, 1H, *J* = 1.9, 6.4 Hz), 7.20–7.32 (m, 4H); ¹³C NMR (CDCl₃) δ 27.1 (q), 29.0 (t), 32.6 (t), 38.4 (q), 39.2 (t), 59.8 (d), 86.4 (s), 124.1 (d), 125.0 (d), 127.1 (d), 129.0 (d), 142.3 (s), 143.9 (s), 153.8 (s), 169.8 (s); HRMS (ESI, ion trap) calcd for C₁₅H₁₉N₂O₃ (M + H⁺) 275.1396; found 275.1395.

 $(5R^*,6S^*)$ -6-((R^*)-1-Hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**trans-erythro-13f**). White solid (31 mg, 41%); R_f 0.3 (hexanes-ethyl acetate, 1:1); mp 205–206 °C; IR (ATR) 3389, 1705, 1651, 1522, 1487, 989, 962, 955, 914, 901, 874, 851, 837, 795, 758, 745, 718, 669, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 1.30 (d, 3H, J = 7.2 Hz), 1.73–1.83 (m, 3H), 1.95– 2.02 (m, 1H), 2.73–2.79 (m, 2H), 2.74 (s, 3H), 3.10 (s, 3H), 3.26 (q, 1H, J = 7.2 Hz), 3.40 (s, 1H), 7.10–7.13 (m, 1H), 7.21–7.28 (m, 2H), 7.56–7.59 (m, 1H); ¹³C NMR (CDCl₃) δ 18.4 (q), 19.5 (t), 27.2 (q), 29.4 (t), 33.7 (t), 35.5 (d), 38.6 (q), 68.9 (d), 74.0 (s), 126.2 (d), 127.2 (d), 128.0 (d), 129.2 (d), 137.8 (s), 139.1 (s), 153.6 (s), 173.5 (s). Anal. Calcd for $C_{17}H_{22}N_2O_3$: C, 67.53; H, 7.33; N, 9.26. Found: C, 67.54; H, 7.33; N, 9.21.

 $(5R^*,6S^*)$ -6- $((S^*)$ -1-Hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-threo-13f). Colorless paste (53 mg, 70%); R_f 0.25 (hexanes-ethyl acetate, 1:1); IR (ATR) 1697, 1647, 1485, 978, 951, 916, 878, 858, 799, 758, 727, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.26 (d, 3H, J = 7.5 Hz), 1.74–1.93 (m, 4H), 2.19 (brs, 1H), 2.67–2.86 (m, 3H), 2.70 (s, 3H), 3.18 (s, 3H), 3.41 (s, 1H), 7.09–7.13 (m, 1H), 7.20–7.26 (m, 2H), 7.36–7.40 (m, 1H); ¹³C NMR (CDCl₃) δ 18.2 (q), 19.4 (t), 27.3 (q), 29.1 (t), 33.4 (t), 36.9 (d), 38.8 (q), 68.2 (d), 75.5 (s), 126.1 (d), 126.8 (d), 128.0 (d), 129.2 (d), 137.0 (s), 138.5 (s), 153.5 (s), 173.4 (s); HRMS (ESI, ion trap) calcd for C₁₇H₂₃N₂O₃ (M + H⁺) 303.1709; found 303.1707.

(5*R**,6*R**)-6-((*S**)-1-*H*ydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (cis-erythro-13f). Colorless paste (60 mg, 80%); *R*_f 0.35 (hexanes–ethyl acetate, 1:1); IR (ATR) 3444, 1705, 1655, 1477, 989, 897, 874, 829, 812, 789, 772, 754, 737, 714, 692, 669, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 1.51 (d, 3H, *J* = 7.5 Hz), 1.61–1.69 (m, 2H), 1.74–1.81 (m, 1H), 1.92–1.99 (m, 1H), 2.34 (s, 3H), 2.62–2.73 (m, 2H), 3.07–3.14 (m, 1H), 3.15 (s, 3H), 3.90 (d, 1H, *J* = 6.3 Hz), 7.07–7.10 (m, 1H), 7.17–7.28 (m, 2H), 7.61–7.64 (m, 1H); ¹³C NMR (CDCl₃) δ 13.3 (q), 19.4 (t), 27.5 (q), 29.7 (t), 33.4 (t), 37.9 (q), 39.5 (d), 66.6 (d), 74.9 (s), 126.1 (d), 127.6 (d), 128.0 (d), 129.3 (d), 137.9 (s), 140.1 (s), 154.0 (s), 172.5 (s); HRMS (ESI, ion trap) calcd for C₁₇H₂₃N₂O₃ (M + H⁺) 303.1709; found 303.1706.

(*SR**,*6R**)-*6*-((*R**)-1-*H*ydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**cis-threo-13f**). Colorless paste (56 mg, 74%); *R*_f 0.45 (hexanes–ethyl acetate, 1:2); IR (ATR) 3422, 1701, 1647, 1483, 976, 935, 916, 897, 841, 772, 752, 727, 690, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.05 (d, 3H, *J* = 6.2 Hz), 1.72–1.99 (m, 5H), 2.70 (brs, 3H), 2.73–2.85 (m, 2H), 2.96–3.03 (m, 1H), 3.23 (s, 3H), 3.90 (d, 1H, *J* = 6.0 Hz), 7.07–7.11 (m, 1H), 7.19–7.26 (m, 2H), 7.35–7.38 (m, 1H); ¹³C NMR (CDCl₃) δ 12.9 (q), 19.2 (t), 27.5 (q), 29.3 (t), 34.6 (t), 38.1 (q), 39.0 (d), 65.3 (d), 75.6 (s), 126.4 (d), 126.6 (d), 127.9 (d), 129.1 (d), 136.8 (s), 139.4 (s), 153.9 (s), 172.7 (s); HRMS (ESI, ion trap) calcd for C₁₇H₂₃N₂O₃ (M + H⁺) 303.1709; found 303.1707.

(5*R**,6*S**)-6-((*R**)-1-Hydroxy-2,3-dihydro-1H-inden-1-yl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-erythro-13g). Colorless paste (45 mg, 63%); *R*_f 0.3 (hexanes-ethyl acetate, 1:2); IR (ATR) 3383, 1699, 1647, 955, 920, 905, 793, 772, 756, 729, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 1.26 (d, 3H, *J* = 7.2 Hz), 2.03–2.10 (m, 1H), 2.36–2.43 (m, 1H), 2.70 (s, 3H), 2.83–2.98 (m, 4H), 3.13 (s, 3H), 3.36 (d, 1H, *J* = 1.1 Hz), 7.19–7.28 (m, 4H); ¹³C NMR (CDCl₃) δ 18.0 (q), 26.8 (q), 29.8 (t), 36.2 (d), 39.2 (q), 39.7 (t), 68.5 (d), 86.4 (s), 124.0 (d), 125.4 (d), 126.9 (d), 129.4 (d), 142.9 (s), 143.4 (s), 153.2 (s), 172.3 (s); HRMS (ESI, ion trap) calcd for C₁₆H₂₁N₂O₃ (M + H⁺) 289.1552; found 289.1551.

 $(5R^*, 6S^*)$ -6- $((S^*)$ -1-Hydroxy-2,3-dihydro-1H-inden-1-yl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-threo-13g). White solid (42 mg, 58%); R_f 0.4 (hexanes-ethyl acetate, 1:2); mp 157–158 °C; IR (ATR) 3327, 1694, 1645, 1510, 1472, 993, 966, 918, 903, 876, 851, 820, 795, 754, 723, 669, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 1.29 (d, 3H, *J* = 7.4 Hz), 1.96–2.04 (m, 1H), 2.20 (brs, 1H), 2.34–2.40 (m, 1H), 2.71 (s, 3H), 2.79–2.87 (m, 1H), 2.89–2.98 (m, 2H), 3.07 (s, 1H), 3.08 (s, 3H), 7.22–7.31 (m, 4H); ¹³C NMR (CDCl₃) δ 17.7 (q), 27.2 (q), 29.1 (t), 37.3 (d), 39.2 (q), 39.4 (t), 67.1 (d), 86.3 (s), 124.0 (d), 125.1 (d), 127.2 (d), 129.1 (d), 142.4 (s), 143.9 (s), 153.4 (s), 173.6 (s). Anal. Calcd for C₁₆H₂₀N₂O₃: C, 66.65; H, 6.99; N, 9.72. Found: C, 66.68; H, 7.00; N, 9.62.

 $(5R^*, 6R^*)$ -6- $((S^*)$ -1-Hydroxy-2,3-dihydro-1H-inden-1-yl)-1,3,5trimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-erythro-13g). Colorless paste (49 mg, 68%); R_f 0.25 (hexanes-ethyl acetate, 1:1); IR (ATR) 3422, 1701, 1647, 1479, 988, 955, 916, 895, 841, 808, 783, 756, 729, 708, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.52 (d, 3H, *J* = 7.4 Hz), 1.87–1.96 (m, 1H), 2.01 (brs, 1H), 2.37–2.43 (m, 1H), 2.39 (s, 3H), 2.57–2.65 (m, 1H), 2.87 (dd, 1H, *J* = 8.8, 16.5 Hz), 3.06–3.13 (m, 1H), 3.09 (s, 3H), 3.75 (d, 1H, *J* = 6.1 Hz), 7.21–7.31 (m, 3H), 7.38– 7.41 (m, 1H); ¹³C NMR (CDCl₃) δ 12.8 (q), 27.5 (q), 29.9 (t), 38.0 (t), 38.2 (q), 39.7 (d), 65.8 (d), 86.0 (s), 123.7 (d), 125.4 (d), 126.7 (d), 129.1 (d), 142.7 (s), 145.9 (s), 153.5 (s), 172.6 (s); HRMS (ESI, ion trap) calcd for $C_{16}H_{21}N_2O_3$ (M + H⁺) 289.1552; found 289.1551

 $(5R^*, 6R^*)$ -6- $((R^*)$ -1-*Hydroxy*-2,3-*dihydro*-1*H*-*inden*-1-*y*])-1,3,5trimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (cis-threo-13g). White solid (44 mg, 61%); R_f 0.2 (hexanes-ethyl acetate, 1:1); mp 107–109 °C; IR (ATR) 3406, 3221, 1690, 1645, 1489, 1474, 991, 962, 897, 831, 772, 754, 726, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.49 (d, 3*H*, *J* = 7.0 Hz), 1.89 (brs, 1H), 1.91–1.98 (m, 1H), 2.26 (s, 3H), 2.55–2.62 (m, 1H), 2.82–2.91 (m, 1H), 2.94–3.05 (m, 2H), 3.21 (s, 3H), 3.37 (d, 1H, *J* = 5.6 Hz), 7.14–7.18 (m, 1H), 7.22–7.32 (m, 3H); ¹³C NMR (CDCl₃) δ 13.3 (q), 27.5 (q), 29.2 (t), 37.1 (q), 39.1 (d), 41.6 (t), 63.9 (d), 86.1 (s), 124.4 (d), 124.7 (d), 127.4 (d), 128.8 (d), 142.1 (s), 145.1 (s), 153.9 (s), 172.8 (s); HRMS (ESI, ion trap) calcd for C₁₆H₂₁N₂O₃ (M + H⁺) 289.1552; found 289.1551.

 $(5R^*,6S^*)$ -5-Fluoro-6-((S*)-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (ciserythro-13h). White solid (41 mg, 54%); R_f 0.3 (hexanes-ethyl acetate, 1:1); mp 190–192 °C; IR (ATR) 3352, 1713, 1645, 1514, 1487, 991, 947, 920, 878, 841, 818, 797, 773, 756, 718, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.74–1.81 (m, 2H), 1.87–1.93 (m, 1H), 2.10–2.17 (m, 1H), 2.42 (d, 1H, *J* = 7.5 Hz), 2.71–2.77 (m, 2H), 2.80 (s, 3H), 3.70 (s, 3H), 4.22 (d, 1H, *J* = 6.9 Hz), 5.38 (dd, 1H, *J* = 6.9 Hz, J_{HF} = 47.0 Hz), 7.09–7.13 (m, 1H), 7.21–7.27 (m, 2H), 7.54–7.59 (m, 1H); ¹³C NMR (CDCl₃) δ 19.2 (t), 27.4 (q), 29.3 (t), 35.1 (t), 38.7 (q), 64.6 (d, J_{CCF} = 18.0 Hz), 74.5 (s), 83.9 (d, J_{CF} = 195.5 Hz), 126.0 (d), 127.6 (d), 128.1 (d), 129.0 (d), 137.9 (s), 138.0 (s), 152.6 (s), 165.9 (s, J_{CCF} = 20.7 Hz). Anal. Calcd for C₁₆H₁₉FN₂O₃: C, 62.73; H, 6.25; N, 9.14. Found: C, 62.76; H, 6.24; N, 9.09.

(5*R**,6*S**)-5-*F*luoro-6-((*R**)-1-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-1,3-dimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (*cisthreo-13h*). Colorless paste (18 mg, 23%); *R*_f 0.3 (hexanes–ethyl acetate, 1:1); IR (ATR) 3480, 1713, 1667, 1506, 1483, 916, 866, 849, 785, 750, 721, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.69–1.77 (m, 1H), 1.84–1.95 (m, 1H), 2.03–2.10 (m, 2H), 2.15 (s, 3H), 2.53–2.59 (m, 1H), 2.85–2.92 (m, 2H), 3.28 (s, 3H), 3.93 (d, 1H, *J* = 6.6 Hz), 5.35 (dd, 1H, *J* = 6.6 Hz, *J*_{HF} = 47.0 Hz), 7.08–7.12 (m, 1H), 7.21–7.28 (m, 2H), 7.30–7.34 (m, 1H); ¹³C NMR (CDCl₃) δ 19.5 (t), 27.5 (q), 27.9 (t), 35.4 (t), 37.0 (q), 62.5 (d, *J*_{CCF} = 19.2 Hz), 75.1 (s, *J*_{CCCF} = 2.4 Hz), 84.1 (d, *J*_{CF} = 195.5 Hz), 126.6 (d), 126.7 (s), 130.1 (d), 128.1 (d), 128.7 (d), 136.1 (s), 138.5 (s), 152.8 (s), 167.3 (s, *J*_{CCF} = 20.4 Hz); HRMS (ESI, ion trap) calcd for C₁₆H₂₀FN₂O₃ (M + H⁺) 307.1458; found 307.1456.

(5*R**,6*S**)-5-*F*luoro-6-((*S**)-1-hydroxy-2,3-dihydro-1*H*-inden-1yl)-1,3-dimethyldihydropyrimidine-2,4(1*H*,3*H*)-dione (*cis-erythro-*13*i*). Colorless paste (51 mg, 70%); *R*_f 0.25 (hexanes–ethyl acetate, 1:1); IR (ATR) 3323, 1742, 1676, 1543, 1508, 1474, 924, 845, 826, 785, 777, 764, 729, 710, 683, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.97–2.06 (m, 1H), 2.29 (brs, 1H), 2.64 (s, 3H), 2.63–2.69 (m, 1H), 2.84–2.91 (m, 1H), 2.99–3.07 (m, 1H), 3.28 (s, 3H), 4.13 (d, 1H, *J* = 7.0 Hz), 5.26 (dd, 1H, *J* = 7.0 Hz, *J*_{HF} = 47.1 Hz), 7.20–7.31 (m, 4H); ¹³C NMR (CDCl₃) δ 27.0 (q), 29.4 (t), 39.2 (q), 40.7 (t), 63.8 (d, *J*_{CCF} = 20.7 Hz), 83.5 (d, *J*_{CF} = 196.7 Hz), 86.3 (s, *J*_{CCCF} = 2.4 Hz), 124.2 (d), 125.5 (d), 126.7 (d), 129.5 (d), 142.5 (s), 144.1 (s), 152.5 (s), 164.9 (s, *J*_{CCF} = 21.6 Hz); HRMS (ESI, ion trap) calcd for C₁₅H₁₈FN₂O₃ (M + H⁺) 293.1301; found 293.1300.

 $(5R^*, 6S^*)$ -5-Fluoro-6-((R^*)-1-hydroxy-2,3-dihydro-1H-inden-1yl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (cis-threo-13i). Colorless paste (47 mg, 64%); R_f 0.3 (hexanes-ethyl acetate, 1:1); IR (ATR) 3401, 1719, 1655, 1474, 914, 864, 847, 754, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 1.96–2.05 (m, 1H), 2.26 (brs, 1H), 2.30 (s, 3H), 2.75–2.91 (m, 2H), 2.95–3.02 (m, 1H), 3.23 (s, 3H), 3.66 (d, 1H, J = 6.9 Hz), 5.35 (dd, 1H, J = 6.9 Hz, J_{HF} = 47.0 Hz), 7.22–7.34 (m, 4H); ¹³C NMR (CDCl₃) δ 27.5 (q), 29.1 (t), 37.8 (q), 40.6 (t), 61.6 (d, J_{CCF} = 20.4 Hz), 83.2 (d, J_{CF} = 195.5 Hz), 85.1 (s), 124.7 (d), 124.9 (d), 127.4 (d), 129.1 (d), 142.3 (s), 143.9 (s), 152.8 (s), 167.2 (s, J_{CCF} = 20.4 Hz); HRMS (ESI, ion trap) calcd for C₁₅H₁₈FN₂O₃ (M + H⁺) 293.1301; found 293.1299.

N-Methyl-2-((1R,4'S*)-3'-methyl-2'-oxo-3,4-dihydro-2H-spiro-[naphthalene-1,5'-oxazolidin]-4'-yl)propanamide* (*erythro-14f*). Colorless paste (38 mg, 50%, 68:32 dr); R_f 0.25 (ethyl acetate); IR

(ATR) 3350, 1734, 1665, 1558, 982, 922, 903, 880, 835, 810, 772, 727, 667, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 0.46 (d, 0.96H, *J* = 6.6 Hz), 1.17 (d, 2.04H, *J* = 7.0 Hz), 1.89–2.20 (m, 6H), 2.25–2.32 (m, 0.68H), 2.28 (d, 2.04H, *J* = 5.0 Hz), 2.40–2.47 (m, 0.32H), 2.72 (d, 0.96H, *J* = 4.9 Hz), 2.76–2.93 (m, 2H), 2.94 (s, 0.96H), 3.09 (s, 2.04H), 3.71 (d, 0.32H, *J* = 9.9 Hz), 4.03 (d, 0.68H, *J* = 8.7 Hz), 4.25 (brs, 0.68H), 6.22 (brs, 0.32H), 7.09–7.14 (m, 1H), 7.18–7.28 (m, 1H), 7.51–7.55 (m, 0.68H), 7.57–7.60 (m, 0.32H); ¹³C NMR (CDCl₃) δ major: 15.9 (q), 17.4 (t), 26.3 (q), 27.6 (t), 34.2 (q), 34.8 (t), 44.2 (d), 67.4 (d), 83.4 (s), 125.2 (d), 126.9 (d), 128.3 (d), 129.0 (d), 133.6 (s), 139.0 (s), 158.3 (s), 173.7 (s), minor: 14.3 (q), 18.5 (t), 26.3 (q), 28.3 (t), 31.9 (q), 35.9 (t), 42.5 (d), 69.4 (d), 82.4 (s), 125.7 (d), 127.2 (d), 128.5 (d), 128.9 (d), 133.4 (s), 137.9 (s), 158.1 (s), 174.2 (s); HRMS (ESI, ion trap) calcd for C₁₇H₂₃N₂O₃ (M + H⁺) 303.1709; found 303.1706.

N-Methyl-2-((1R*,4'R*)-3'-methyl-2'-oxo-2,3-dihydrospiro-[indene-1,5'-oxazolidin]-4'-yl)propanamide (erythro-14g). Colorless paste (11 mg, 15%, 55:45 dr); R_f 0.35 (ethyl acetate); IR (ATR) 3321, 1732, 1647, 1545, 1476, 908, 762, 727, 683, 669, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 0.55 (d, 1.65H, J = 6.9 Hz), 1.23 (d, 1.35H, J = 6.9Hz), 2.25–2.31 (m, 0.45H), 2.33 (d, 1.35H, J = 4.6 Hz), 2.35–2.55 (m, 2.55H), 2.72 (d, 1.65H, J = 4.6 Hz), 2.84-3.11 (m, 2H), 2.93 (s, 1.65H), 3.08 (s, 1.35H), 3.95 (d, 0.55H, J = 9.2 Hz), 4.15 (d, 0.45H, J = 7.5 Hz), 4.64 (brs, 0.45H), 6.10 (brs, 0.55H), 7.21-7.35 (m, 3H), 7.36–7.39 (m, 0.45H), 7.43–7.47 (m, 0.55H); ¹³C NMR (CDCl₃) δ 14.3 (q), 15.4 (q), 26.2 (q), 26.4 (q), 28.4 (t), 28.6 (t), 31.3 (q), 33.4 (q), 40.1 (t), 41.9 (t), 42.4 (d), 43.8 (d), 66.8 (d), 67.7 (d), 91.2 (s), 91.6 (s), 124.4 (d), 124.6 (d), 125.17 (d), 125.24 (d), 126.3 (d), 126.8 (d), 129.4 (d), 129.7 (d), 139.0 (s), 139.1 (s), 144.0 (s), 144.7 (s), 158.3 (s), 158.6 (s), 173.6 (s), 174.1 (s); HRMS (ESI, ion trap) calcd for $C_{16}H_{21}N_2O_3$ (M + H⁺) 289.1552; found 289.1551.

(2R*)-2-Fluoro-N-methyl-2-((4'S*)-3'-methyl-2'-oxo-3,4-dihydro-2H-spiro[naphthalene-1,5'-oxazolidin]-4'-yl)acetamide (14h). Colorless paste (54 mg, 70%, 60:40 dr); R_{f} 0.4 (hexanes-ethyl acetate, 1:5); ¹H NMR (CDCl₃) δ 1.86–2.18 (m, 4H), 2.21–2.27 (m, 0.6H), 2.33-2.41 (m, 0.4H), 2.78-2.93 (m, 6.8H), 2.96 (s, 1.2H), 4.27 (d, 0.6H, J_{HF} = 46.0 Hz), 4.43 (d, 0.6H, J_{HF} = 25.9 Hz), 4.59 (d, 0.6H, J_{HF} = 28.5 Hz), 5.16 (d, 0.4H, J_{HF} = 46.8 Hz), 6.68 (brs, 0.6H), 6.95 (brs, 0.4H), 7.11-7.16 (m, 1H), 7.20-7.32 (m, 2.4H), 7.54-7.59 (m, 0.6H); ¹³C NMR (CDCl₃) δ major: 18.2 (t), 25.8 (q), 27.8 (t), 30.1 (q), 34.6 (t), 66.0 (d, J_{CCF} = 17.4 Hz), 82.3 (s), 87.4 (d, J_{CF} = 197.3 Hz), 125.8 (d), 126.8 (d), 128.7 (d), 128.8 (d), 132.4 (s), 137.7 (s), 157.6 (s), 168.1 (s, J_{CCF} = 20.4 Hz), minor: 19.2 (t), 26.0 (q), 28.9 (t), 30.0 (q), 30.4 (t), 66.3 (d, J_{CCF} = 16.8 Hz), 79.7 (s), 87.3 (d, J_{CF} = 199.1 Hz), 124.7 (d), 127.0 (d), 128.8 (d), 129.3 (d), 136.7 (s), 137.2 (s), 157.4 (s), 167.7 (s, J_{CCF} = 19.8 Hz); HRMS (ESI, ion trap) calcd for $C_{16}H_{20}FN_2O_3$ (M + H⁺) 307.1458; found 307.1456.

2-Fluoro-N-methyl-2-((1R*,4'S*)-3'-methyl-2'-oxo-2,3-dihydrospiro[indene-1,5'-oxazolidin]-4'-yl)acetamide (erythro-14i). Colorless paste (61 mg, 83%); R_f 0.3 (hexanes-ethyl acetate, 1:2); IR (ATR) 3325, 1740, 1670, 1543, 1476, 987, 847, 826, 791, 760, 727, 706, 683, 669, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 2.38–2.45 (m, 1H), 2.50–2.56 (m, 1H), 2.85 (d, 3H, *J* = 5.0 Hz), 2.93 (s, 3H), 2.95–3.00 (m, 2H), 4.31 (d, 1H, *J*_{HF} = 28.9 Hz), 4.40 (d, 1H, *J*_{HF} = 46.1 Hz), 6.56 (brs, 1H), 7.25–7.31 (m, 2H), 7.32–7.37 (m, 1H), 7.49–7.52 (m, 1H); ¹³C NMR (CDCl₃) δ 26.0 (q), 28.3 (t), 30.2 (q), 41.1 (t), 65.0 (d, *J*_{CCF} = 18.0 Hz), 88.1 (d, *J*_{CF} = 197.3 Hz), 90.7 (s), 124.8 (d), 125.2 (d), 127.1 (d), 129.9 (d), 137.5 (s), 143.7 (s), 158.0 (s), 167.9 (s, *J*_{CCF} = 19.2 Hz); HRMS (ESI, ion trap) calcd for C₁₅H₁₈FN₂O₃ (M + H⁺) 293.1301; found 293.1300.

2-Fluoro-N-methyl-2-((1R*,4'R*)-3'-methyl-2'-oxo-2,3-dihydrospiro[indene-1,5'-oxazolidin]-4'-yl)acetamide (threo-14i). White solid (50 mg, 68%); R_f 0.3 (hexanes-ethyl acetate, 1:2); mp 198– 200 °C; IR (ATR) 3366, 1749, 1732, 1668, 1558, 1541, 976, 964, 922, 847, 820, 758, 723, 700, 679, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 2.37–2.45 (m, 1H), 2.56–2.63 (m, 1H), 2.93 (d, 3H, *J* = 5.0 Hz), 2.94–2.98 (m, 1H), 2.99 (s, 3H), 3.16–3.24 (m, 1H), 4.60 (d, 1H, J_{HF} = 30.3 Hz), 5.11 (d, 1H, J_{HF} = 47.3 Hz), 6.70 (brs, 1H), 7.24–7.37 (m, 4H); ¹³C NMR (CDCl₃) δ 26.0 (q), 29.6 (t), 30.2 (q), 33.7 (t), 64.3 (d, J_{CCF} = 18.0 Hz), 88.2 (d, J_{CF} = 199.1 Hz), 89.5 (s), 121.8 (d), 125.1 (d), 127.5 (d), 129.9 (d), 142.3 (s), 143.3 (s), 157.2 (s), 167.5 (s, J_{CCF} = 19.2 Hz);

HRMS (ESI, ion trap) calcd for $C_{15}H_{18}FN_2O_3$ (M + H⁺) 293.1301; found 293.1299.

1,3-Dimethyl-1-((3R*,4R*)-4-methyl-5-oxo-2,2-diphenyltetrahydrofuran-3-yl)urea (trans-15h). Colorless paste (41 mg, 49%); R_f 0.2 (hexanes-ethyl acetate, 1:1); IR (ATR) 3366, 1771, 1630, 1533, 1489, 986, 908, 764, 729, 700, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 1.12 (d, 3H, *J* = 7.5 Hz), 2.14 (s, 3H), 2.69–2.75 (m, 1H), 2.83 (d, 3H, *J* = 4.6 Hz), 4.25 (brs, 1H), 6.09 (brs, 1H), 7.19–7.30 (m, 4H), 7.33–7.38 (m, 2H), 7.45–7.50 (m, 2H), 7.75–7.79 (m, 2H); ¹³C NMR (CDCl₃) δ 15.3 (q), 27.7 (q), 29.5 (q), 39.5 (d), 64.2 (d), 91.3 (s), 125.2 (d), 125.5 (d), 127.4 (d), 127.9 (d), 128.0 (d), 128.6 (d), 140.2 (s), 143.8 (s), 158.8 (s), 177.6 (s); HRMS (ESI, ion trap) calcd for C₂₀H₂₂N₂O₃ (M + H⁺) 339.1709; found 339.1707.

1-((3*R*^{*},4*R**)-2,2-*B*is(4-fluorophenyl)-4-methyl-5-oxotetrahydrofuran-3-yl)-1,3-dimethylurea (**trans-15i**). White solid (22 mg, 24%); *R*_j 0.3 (hexanes-ethyl acetate, 1:2); mp 238–240 °C; IR (ATR) 3306, 1771, 1626, 1601, 1549, 1506, 1489, 989, 966, 951, 935, 868, 833, 808, 768, 727, 692, 679, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.14 (d, 3H, *J* = 7.7 Hz), 2.17 (s, 3H), 2.69–2.76 (m, 1H), 2.84 (d, 3H, *J* = 4.6 Hz), 4.29 (brs, 1H), 6.01 (brs, 1H), 6.94–7.00 (m, 2H), 7.01–7.07 (m, 2H), 7.39–7.44 (m, 2H), 7.72–7.77 (m, 2H); ¹³C NMR (CDCl₃) δ 15.5 (q), 27.8 (q), 29.7 (q), 39.4 (d), 64.4 (d), 90.7 (s), 115.1 (d, *J*_{CCF} = 21.6 Hz), 115.7 (d, *J*_{CCF} = 21.6 Hz), 127.1 (d, *J*_{CCCF} = 8.4 Hz), 127.6 (d, *J*_{CCCF} = 7.8 Hz), 136.1 (s, *J*_{CCCCF} = 3.6 Hz), 139.8 (s, *J*_{CCCCF} = 3.0 Hz), 158.8 (s), 162.0 (s, *J*_{CF} = 247.7 Hz), 162.3 (s, *J*_{CF} = 247.4 Hz), 177.1 (s). Anal. Calcd for C₂₀H₂₀F₂N₂O₃: C, 64.16; H, 5.38; N, 7.48. Found: C, 64.09; H, 5.40; N, 7.38.

1-((3*R**,4*R**)-2,2-*Bis*(4-methoxyphenyl)-4-methyl-5-oxotetrahydrofuran-3-yl)-1,3-dimethylurea (**trans-15***j*). White solid (15 mg, 15%); *R*_f 0.25 (hexanes–ethyl acetate, 1:2); mp 232–234 °C; IR (ATR) 3345, 1773, 1622, 1609, 1549, 1506, 1485, 989, 941, 926, 816, 795, 768, 729, 677, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 1.15 (d, 3H, *J* = 7.5 Hz), 2.15 (s, 3H), 2.67–2.74 (m, 1H), 2.83 (d, 3H, *J* = 4.6 Hz), 3.76 (s, 3H), 3.77 (s, 3H), 4.23–4.27 (m, 1H), 5.98 (brs, 1H), 6.77–6.82 (m, 2H), 6.84–6.89 (m, 2H), 7.30–7.34 (m, 2H), 7.62–7.67 (m, 2H); ¹³C NMR (CDCl₃) δ 15.2 (q), 27.8 (q), 29.7 (q), 39.3 (d), 55.17 (q), 55.20 (q), 64.0 (d), 91.1 (s), 113.4 (d), 113.9 (d), 126.6 (d), 127.0 (d), 132.8 (s), 136.2 (s), 158.8 (s), 158.9 (s), 159.0 (s), 177.7 (s). Anal. Calcd for C₂₂H₂₆N₂O₅: C, 66.32; H, 6.58; N, 7.03. Found: C, 66.35; H, 6.57; N, 6.99.

Methyl (*R**)-2-((*R**)-3-*Methyl*-2-(*methylimino*)-5,5-diphenyloxazolidin-4-yl)propanoate (**16h**). Colorless paste (79 mg, 90%); *R*_f 0.2 (ethyl acetate-ethanol, 10:1); IR (ATR) 1701, 1522, 1491, 964, 939, 883, 808, 760, 750, 733, 698, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 1.01 (d, 3H, *J* = 7.0 Hz), 2.59–2.66 (m, 1H), 2.96 (s, 3H), 3.11 (s, 3H), 3.53 (s, 3H), 4.97 (d, 1H, *J* = 4.7 Hz), 7.25–7.42 (m, 8H), 7.54–7.59 (m, 2H); ¹³C NMR (CDCl₃) δ 11.6 (q), 32.9 (q), 33.1 (q), 41.4 (d), 52.1 (q), 67.4 (d), 89.6 (s), 125.6 (d), 126.6 (d), 128.0 (d), 128.2 (d), 128.3 (d), 128.7 (d), 138.4 (s), 143.1 (s), 154.5 (s), 175.0 (s); HRMS (ESI, ion trap) calcd for C₂₁H₂₅N₂O₃ (M + H⁺) 353.1865; found 353.1862.

Ethyl (*R**)-2-((*R**)-3-*M*ethyl-2-(*methylimino*)-5,5-diphenyloxazolidin-4-yl)propanoate (**16h**'). Colorless paste (82%, 90%); R_f 0.25 (ethyl acetate-ethanol, 5:1); IR (ATR) 1701, 1528, 966, 922, 860, 760, 752, 727, 698, 665 cm⁻¹; ¹H NMR (CDCl₃) δ 1.01 (d, 3H, *J* = 6.9 Hz), 1.17 (t, 3H, *J* = 7.2 Hz), 2.58–2.65 (m, 1H), 3.06 (brs, 3H), 3.13 (s, 3H), 3.86–3.94 (m, 1H), 4.00–4.08 (m, 1H), 5.03 (brs, 1H), 7.28– 7.43 (m, 8H), 7.53–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 11.5 (q), 13.8 (q), 31.7 (q), 33.6 (q), 41.2 (d), 61.2 (t), 67.7 (d), 125.4 (d), 126.5 (d), 128.2 (d), 128.3 (d), 128.7 (d), 128.8 (d), 137.5 (s), 142.2 (s), 155.7 (s), 174.0 (s); HRMS (ESI, ion trap) calcd for C₂₂H₂₆N₂O₃ (M + H⁺) 367.2022; found 367.2019.

Methyl (*R**)-2-((*R**)-5,5-*Bis*(4-fluorophenyl)-3-methyl-2-(methylimino)oxazolidin-4-yl)propanoate (**16**i). Colorless paste (87 mg, 90%); *R*_f 0.2 (ethyl acetate-ethanol, 10:1); IR (ATR) 1703, 1603, 1508, 989, 966, 887, 835, 804, 758, 727, 704, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 1.03 (d, 3H, *J* = 7.3 Hz), 2.52–2.59 (m, 1H), 2.90 (s, 3H), 3.07 (s, 3H), 3.51 (s, 3H), 4.81 (d, 1H, *J* = 5.6 Hz), 6.98–7.04 (m, 2H), 7.05–7.12 (m, 2H), 7.27–7.35 (m, 2H), 7.51–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 12.0 (q), 32.8 (q), 33.4 (q), 41.5 (d), 52.0 (q), 67.5 (q), 88.9 (s), 115.2 (d, *J*_{CCF} = 21.6 Hz), 115.6 (d, *J*_{CCF} = 21.6 Hz), 127.5 (d, $\begin{array}{l} J_{CCCF} = 8.4 \mbox{ Hz}), 128.7 \mbox{ (d, } J_{CCCF} = 8.4 \mbox{ Hz}), 134.0 \mbox{ (s, } J_{CCCCF} = 3.6 \mbox{ Hz}), \\ 138.7 \mbox{ (s, } J_{CCCCF} = 2.4 \mbox{ Hz}), 153.9 \mbox{ (s)}, 162.2 \mbox{ (s, } J_{CF} = 248.3 \mbox{ Hz}), 162.5 \mbox{ (s, } J_{CF} = 248.0 \mbox{ Hz}); \mbox{ HRMS} \mbox{ (ESI, ion trap) calcd for } C_{21}H_{23}F_2N_2O_3 \mbox{ (M + } H^+) \mbox{ 389.1677; found 389.1675.} \end{array}$

Methyl (\hat{R}^*)-2-((R^*)-5,5-Bis(4-methoxyphenyl)-3-methyl-2-(methylimino)oxazolidin-4-yl)propanoate (**16***j*). Colorless paste (92 mg, 89%); R_f 0.3 (ethyl acetate-ethanol, 1:1); IR (ATR) 1697, 1609, 1582, 1508, 986, 964, 827, 772, 729, 712, 667, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 1.00 (d, 3H, J = 7.0 Hz), 2.21 (brs, 3H), 2.55–2.61 (m, 1H), 2.84 (s, 3H), 3.05 (s, 3H), 3.51 (s, 3H), 3.78 (s, 3H), 3.80 (s, 3H), 4.76 (d, 1H, J = 5.3 Hz), 6.80–6.85 (m, 2H), 6.86–6.91 (m, 2H), 7.21–7.27 (m, 2H), 7.44–7.49 (m, 2H); ¹³C NMR (CDCl₃) δ 11.9 (q), 33.1 (q), 33.2 (q), 41.6 (d), 52.0 (q), 55.2 (q), 55.3 (q), 67.5 (d), 88.9 (s), 113.4 (d), 113.8 (d), 127.0 (d), 128.1 (d), 131.0 (s), 135.7 (s), 154.4 (s), 159.0 (s), 159.3 (s), 175.2 (s); HRMS (ESI, ion trap) calcd for C₁₃H₂₉N₂O₅ (M + H⁺) 413.2076; found 413.2074.

Isomerization of *cis*-Adducts to *trans*-Adducts. A mixture of *cis*-3h (103 mg, 0.25 mmol) and DMAP (10 mg) was heated under a nitrogen atmosphere for 24 h. After cooling to ambient temperature, the mixture was purified by column chromatography on silica gel (hexanes–EtOAc) to give *trans*-3h (69 mg) in 67% yield.

 $(5R^*,6S^*)$ -6-(*Diphenyl*((trimethylsilyl)oxy)methyl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-3h). White solid (69 mg, 67%); R_f 0.4 (hexanes-ethyl acetate, 2:1); mp 148–149 °C; IR (ATR) 1703, 1659, 1508, 1481, 995, 953, 922, 891, 868, 835, 789, 779, 752, 746, 718, 708, 660 cm⁻¹; ¹H NMR (CDCl₃) δ –0.25 (s, 9H), 1.33 (d, 3H, *J* = 7.5 Hz), 2.42 (s, 3H), 2.91 (q, 1H, *J* = 7.5 Hz), 3.22 (s, 3H), 4.09 (s, 1H), 7.27–7.39 (m, 10H); ¹³C NMR (CDCl₃) δ 1.5 (q), 18.4 (q), 26.8 (q), 37.3 (d), 40.5 (q), 69.6 (d), 84.5 (s), 127.5 (d), 128.1 (d), 128.4 (d), 128.6 (d), 128.7 (d), 139.8 (s), 140.5 (s), 153.0 (s), 171.9 (s). Anal. Calcd for C₂₃H₃₀N₂O₃Si: C, 67.28; H, 7.37; N, 6.82. Found: C, 67.39; H, 7.42; N, 6.75.

 $(5R^*, 6S^*)$ -6-(*Bis*(4-fluorophenyl)((trimethylsilyl)oxy)methyl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-3i). Colorless paste (70 mg, 63%); R_f 0.5 (hexanes-ethyl acetate, 2:1); IR (ATR) 1705, 1659, 1603, 1506, 1487, 999, 934, 920, 897, 874, 839, 822, 812, 752, 731, 689, 675 cm⁻¹; ¹H NMR (CDCl₃) δ -0.23 (s, 9H), 1.34 (d, 3H, *J* = 7.5 Hz), 2.50 (s, 3H), 2.84 (q, 1H, *J* = 7.5 Hz), 3.22 (s, 3H), 4.03 (s, 1H), 7.01–7.06 (m, 2H), 7.08–7.13 (m, 2H), 7.29–7.37 (m, 4H); ¹³C NMR (CDCl₃) δ 1.5 (q), 18.4 (q), 26.8 (q), 37.2 (d), 40.6 (q), 69.7 (d), 83.7 (s), 114.5 (d, *J*_{CCF} = 21.6 Hz), 115.5 (d, *J*_{CCCF} = 21.6 Hz), 130.4 (d, *J*_{CCCF} = 7.8 Hz), 130.5 (d, *J*_{CCCF} = 7.8 Hz), 135.4 (s, *J*_{CCCCF} = 2.4 Hz), 136.2 (s, *J*_{CCCCF} = 3.0 Hz), 152.8 (s), 162.3 (s, *J*_{CF} = 248.3 Hz), 162.5 (s, *J*_{CF} = 250.7 Hz), 171.6 (s); HRMS (ESI, ion trap) calcd for C₂₃H₂₉F₂N₂O₃Si (M + H⁺) 447.1916; found 447.1914.

 $(5R^*,6S^*)$ -6-(*Bis*(4-methoxyphenyl)((trimethylsilyl)oxy)methyl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-3j). Colorless paste (88 mg, 75%); R_f 0.6 (hexanes-ethyl acetate, 1:1); IR (ATR) 1703, 1661, 1609, 1580, 1508, 1485, 999, 934, 895, 876, 837, 806, 768, 752, 727, 679 cm⁻¹; ¹H NMR (CDCl₃) δ -0.24 (s, 9H), 1.32 (d, 3H, *J* = 7.5 Hz), 2.48 (s, 3H), 2.87 (q, 1H, *J* = 7.5 Hz), 3.22 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 4.02 (s, 1H), 6.82–6.92 (m, 4H), 7.23–7.32 (m, 4H); ¹³C NMR (CDCl₃) δ 1.5 (q), 18.4 (q), 26.9 (q), 37.2 (d), 40.5 (q), 55.18 (q), 55.24 (q), 69.9 (d), 83.8 (s), 112.8 (d), 113.6 (d), 129.9 (d), 130.0 (d), 131.8 (s), 132.6 (s), 153.0 (s), 159.1 (s), 159.5 (s), 171.9 (s); HRMS (ESI, ion trap) calcd for C₂₅H₃₅N₂O₅Si (M + H⁺) 471.2315; found 471.2312.

 $(5R^*,6R^*)$ -6-(Diphenyl((trimethylsilyl)oxy)methyl)-5-fluoro-1,3dimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-3k). White solid (73 mg, 70%); R_f 0.4 (hexanes-ethyl acetate, 5:1); mp 163– 165 °C; IR (ATR) 1715, 1670, 1487, 978, 955, 907, 876, 839, 789, 772, 750, 716, 704, 652 cm⁻¹; ¹H NMR (CDCl₃) δ -0.20 (s, 9H), 2.60 (s, 3H), 3.04 (s, 3H), 4.61 (d, 1H, J_{HF} = 24.7 Hz), 5.15 (d, 1H, J_{HF} = 45.8 Hz), 7.34–7.44 (m, 10H); ¹³C NMR (CDCl₃) δ 1.5 (q), 27.1 (q), 39.5 (q), 68.3 (d, J_{CCF} = 19.2 Hz), 82.7 (s, J_{CCCF} = 10.8 Hz), 85.0 (d, J_{CF} = 175.1 Hz), 128.0 (d), 128.3 (d), 128.46 (d), 128.47 (d), 128.7 (d), 129.0 (d), 139.2 (s), 139.7 (s), 152.1 (s), 163.1 (s, J_{CCF} = 20.4 Hz). Anal. Calcd for C₂₂H₂₇FN₂O₃Si: C, 63.74; H, 6.57; N, 6.76. Found: C, 63.78; H, 6.60; N, 6.67.

 $(5R^*, 6R^*)$ -6-(*Bis*(4-methoxyphenyl)/((trimethylsilyl)oxy)methyl)-5fluoro-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-*3m*). Colorless paste (97 mg, 82%); *R*_f 0.65 (hexanes-ethyl acetate, 2:1); IR (ATR) 1717, 1670, 1609, 1578, 1508, 1481, 999, 976, 951, 908, 878, 839, 804, 781, 748, 729, 685, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 0.19 (s, 9H), 2.65 (s, 3H), 3.04 (s, 3H), 3.82 (s, 3H), 3.84 (s, 3H), 4.53 (d, 1H, *J*_{HF} = 24.2 Hz), 5.12 (d, 1H, *J*_{HF} = 46.1 Hz), 6.85-6.93 (m, 4H), 7.26-7.43 (m, 4H); ¹³C NMR (CDCl₃) δ 1.6 (q), 27.1 (q), 39.4 (q), 55.27 (q), 55.29 (q), 68.7 (d, *J*_{CCF} = 19.2 Hz), 81.9 (s, *J*_{CCCF} = 10.8 Hz), 85.1 (d, *J*_{CF} = 175.1 Hz), 113.2 (d), 113.6 (d), 129.7 (d), 129.8 (d), 131.3 (s), 131.8 (s), 152.1 (s), 159.5 (s), 159.7 (s), 163.2 (s, *J*_{CCF} = 20.1 Hz); HRMS (ESI, ion trap) calcd for C₂₄H₃₂FN₂O₅Si (M + H⁺) 475.2065; found 475.2063.

 $(5R^*, 6S^*)$ -6-(3, 4-Dihydronaphthalen-1-yl)-1,3,5-trimethyldihydropyrimidine-2,4(1H,3H)-dione (**trans-8f**). Colorless paste (59 mg, 83%); R_f 0.35 (hexanes-ethyl acetate, 2:1); IR (ATR) 1744, 1707, 1661, 1599, 1477, 949, 920, 905, 876, 833, 804, 791, 758, 733, 691, 673, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 1.41 (d, 3H, J = 7.3 Hz), 2.23–2.35 (m, 2H), 2.66–2.76 (m, 2H), 2.90–2.96 (m, 1H), 3.08 (s, 3H), 3.21 (s, 3H), 4.21 (brs, 1H), 5.76 (t, 1H, J = 4.0 Hz), 7.00–7.04 (m, 1H), 7.17– 7.23 (m, 3H); ¹³C NMR (CDCl₃) δ 16.8 (q), 22.7 (t), 27.6 (q), 27.8 (t), 35.4 (q), 40.1 (d), 61.4 (d), 121.3 (d), 125.4 (d), 126.5 (d), 127.5 (d), 128.3 (d), 131.78 (s), 131.83 (s), 137.3 (s), 153.8 (s), 171.9 (s); HRMS (ESI, ion trap) calcd for C₁₇H₂₁N₂O₂ (M + H⁺) 285.1603; found 285.1602.

 $(5R^*, 6R^*)$ -6-(3,4-Dihydronaphthalen-1-yl)-5-fluoro-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (**trans-8h**). Colorless paste (42 mg, 58%); R_f 0.55 (hexanes-ethyl acetate, 2:1); IR (ATR) 1721, 1670, 1474, 968, 918, 806, 795, 760, 733, 687, 675 cm⁻¹; ¹H NMR (CDCl₃) δ 2.23–2.37 (m, 2H), 2.66–2.78 (m, 2H), 3.11 (s, 3H), 3.27 (s, 3H), 4.80–4.86 (m, 1H), 4.96 (dd, 1H, J = 2.5 Hz, $J_{HF} = 47.0$ Hz), 5.83–5.86 (m, 1H), 7.17–7.29 (m, 4H); ¹³C NMR (CDCl₃) δ 22.8 (t), 27.5 (t), 27.8 (q), 35.2 (q), 60.0 (d, $J_{CCF} = 22.8$ Hz), 84.9 (d, $J_{CF} = 185.9$ Hz), 120.9 (d), 126.9 (d), 127.0 (s, $J_{CCCF} = 9.6$ Hz), 128.0 (d), 128.1 (d), 128.5 (d), 131.1 (s), 137.0 (s), 152.5 (s), 163.3 (s, $J_{CCF} = 21.6$ Hz); HRMS (ESI, ion trap) calcd for C₁₆H₁₇FN₂O₂ (M + H⁺) 289.1352; found 289.1351.

 $(5R^*,6S^*)$ -1,3,5-Trimethyl-6-(naphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (trans-10f). Colorless paste (52 mg, 74%); R_f 0.35 (hexanes-ethyl acetate, 2:1); IR (ATR) 1707, 1661, 1599, 1510, 1479, 999, 908, 797, 789, 775, 758, 727, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 1.55 (d, 3H, *J* = 7.5 Hz), 3.09 (s, 3H), 3.12–3.17 (m, 1H), 3.26 (s, 3H), 4.95 (d, 1H, *J* = 2.3 Hz), 7.08 (d, 1H, *J* = 7.5 Hz), 7.42 (t, 1H, *J* = 8.0 Hz), 7.51–7.60 (m, 2H), 7.75 (d, 1H, *J* = 8.6 Hz), 7.82 (d, 1H, *J* = 8.6 Hz), 7.90–7.93 (m, 1H); ¹³C NMR (CDCl₃) δ 17.4 (q), 27.7 (q), 35.6 (q), 42.5 (d), 61.5 (d), 121.6 (d), 122.0 (d), 125.3 (d), 126.0 (d), 126.8 (d), 129.1 (d), 129.5 (d), 130.1 (s), 132.5 (s), 134.3 (s), 154.0 (s), 171.6 (s); HRMS (ESI, ion trap) calcd for C₁₇H₁₉N₂O₂ (M + H⁺) 283.1447; found 283.1445.

1,3-Dimethyl-6-(naphthalen-1-yl)pyrimidine-2,4(1H,3H)-dione (17h). Colorless paste (59 mg, 88%); R_f 0.35 (hexanes-ethyl acetate, 2:1); IR (ATR) 1701, 1647, 1616, 1508, 1474, 995, 939, 916, 866, 826, 804, 779, 760, 725, 694, 675 cm⁻¹; ¹H NMR (CDCl₃) δ 3.04 (s, 3H), 3.49 (s, 3H), 5.84 (s, 1H), 7.42–7.45 (m, 1H), 7.54–7.61 (m, 3H), 7.62–7.67 (m, 1H), 7.92–7.97 (m, 1H), 7.98–8.01 (m, 1H); ¹³C NMR (CDCl₃) δ 28.1 (q), 33.6 (q), 103.4 (d), 124.2 (d), 125.2 (d), 126.4 (d), 126.9 (d), 127.7 (d), 128.7 (d), 130.1 (s), 130.5 (d), 130.6 (s), 133.2 (s), 152.5 (s), 153.4 (s), 162.5 (s); HRMS (ESI, ion trap) calcd for C₁₆H₁₅N₂O₂ (M + H⁺) 267.1134; found 267.1133.

 $(5R^*, 6R^*)$ -5-Fluoro-1,3-dimethyl-6-(naphthalen-1-yl)dihydropyrimidine-2,4(1H,3H)-dione (**trans-10h**). Colorless paste (54 mg, 95%); R_f 0.55 (hexanes-ethyl acetate, 2:1); IR (ATR) 1721, 1670, 1599, 1508, 1476, 970, 910, 868, 797, 789, 772, 750, 729, 687 cm⁻¹; ¹H NMR (CDCl₃) δ 3.14 (s, 3H), 3.31 (s, 3H), 5.18 (dd, 1H, J = 2.6 Hz, J_{HF} = 47.1 Hz), 5.54 (dd, 1H, J = 2.6 Hz, J_{HF} = 16.5 Hz), 7.09–7.13 (m, 1H), 7.43–7.48 (m, 1H), 7.56–7.61 (m, 1H), 7.63–7.67 (m, 1H), 7.86–7.90 (m, 1H), 7.91–7.96 (m, 2H); ¹³C NMR (CDCl₃) δ 27.9 (q), 35.3 (q), 60.2 (d, J_{CCF} = 22.8 Hz), 86.0 (d, J_{CF} = 187.1 Hz), 121.0 (d), 123.2 (d), 125.4 (d), 126.38 (s), 126.44 (d), 127.5 (d), 129.7 (d), 130.2 (d and s), 134.2 (s), 152.7 (d), 163.2 (s, J_{CCF} = 21.6 Hz); HRMS (ESI, ion trap) calcd for $C_{16}H_{16}FN_2O_2\ (M + H^+)$ 287.1196; found 287.1195.

 $(5R^*, 6R^*)$ -5-Fluoro-6-(hydroxydiphenylmethyl)-1,3-dimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-11k). White solid (81 mg, 95%); R_f 0.4 (hexanes-ethyl acetate, 2:1); mp 233–235 °C; IR (ATR) 3329, 1717. 1659, 1491, 986, 976, 899, 827, 799, 772, 752, 739, 696, 660 cm⁻¹; ¹H NMR (CDCl₃) δ 2.47 (s, 3H), 2.88 (brs, 1H), 3.11 (s, 3H), 4.44 (d, 1H, J_{HF} = 20.3 Hz), 5.08 (d, 1H, J_{HF} = 46.5 Hz), 7.30– 7.46 (m, 10H); ¹³C NMR (CDCl₃) δ 27.1 (q), 38.0 (q), 66.0 (d, J_{CCF} = 18.6 Hz), 78.4 (s, J_{CCCF} = 10.8 Hz), 84.9 (d, J_{CF} = 176.3 Hz), 124.9 (d), 125.7 (d), 126.5 (d), 126.6 (d), 127.0 (d), 127.4 (d), 142.7 (s), 143.0 (s), 152.7 (s), 162.8 (s, J_{CF} = 20.4 Hz). Anal. Calcd for C₁₉H₁₉FN₂O₃: C,66.66; H, 5.59; N, 8.18. Found: C, 66.60; H, 5.59; N, 8.12.

 $(5R^*,6R^*)$ -5-Fluoro-6-(hydroxybis(4-methoxyphenyl)methyl)-1,3dimethyldihydropyrimidine-2,4(1H,3H)-dione (trans-11m). Colorless paste (92 mg, 92%); R_f 0.5 (hexanes-ethyl acetate, 1:1); IR (ATR) 3422, 1717, 1655, 1607, 1582, 1508, 1485, 976, 908, 831, 804, 777, 754, 727, 681 cm⁻¹; ¹H NMR (CDCl₃) δ 2.55 (s, 3H), 2.57 (brs, 1H), 3.09 (s, 3H), 3.80 (s, 3H), 3.83 (s, 3H), 4.34 (d, 1H, J_{HF} = 20.6 Hz), 5.08 (d, 1H, J_{HF} = 46.4 Hz), 6.84–6.89 (m, 2H), 6.92–6.96 (m, 2H), 7.23–7.28 (m, 2H), 7.31–7.36 (m, 2H); ¹³C NMR (CDCl₃) δ 27.4 (q), 38.4 (q), 55.2 (q), 55.3 (q), 67.5 (d, J_{CCF} = 19.2 Hz), 79.1 (s, J_{CCCF} = 10.8 Hz), 85.5 (d, J_{CF} = 176.3 Hz), 113.8 (d), 114.1 (d), 127.2 (d), 127.9 (d), 134.1 (s), 134.2 (s), 152.8 (s), 159.3 (s), 159.4 (s), 164.4 (s, J_{CCF} = 19.2 Hz); HRMS (ESI, ion trap) calcd for $C_{21}H_{23}FN_2O_5$ (M + H⁺) 403.1669; found 403.1668.

(*R**)-*N*-Methyl-2-((*S**)-3-methyl-2-oxo-5,5-diphenyloxazolidin-4yl)propanamide (**threo-12h**). White solid (29 mg, 34%); *R*_f 0.3 (ethyl acetate); mp 215 °C; IR (ATR) 3300, 1738, 1663, 1560, 1493, 995, 941, 916, 901, 835, 756, 700, 683, 664 cm⁻¹; ¹H NMR (CDCl₃) δ 0.84 (d, 3H, *J* = 6.9 Hz), 2.60 (d, 3H, *J* = 4.6 Hz), 2.68–2.75 (m, 1H), 2.88 (s, 3H), 4.99 (d, 1H, *J* = 5.4 Hz), 5.41 (brs, 1H), 7.19–7.34 (m, 4H), 7.36–7.41 (m, 2H), 7.42–7.47 (m, 2H), 7.64–7.69 (m, 2H); ¹³C NMR (CDCl₃) δ 11.4 (q), 26.5 (q), 30.4 (q), 40.7 (d), 67.3 (d), 87.2 (s), 125.6 (d), 127.3 (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.6 (d), 137.8 (s), 143.6 (s), 156.9 (s), 172.8 (s). Anal. Calcd for C₂₀H₂₂N₂O₃: C, 70.99; H, 6.55; N, 8.28. Found: C, 70.95; H, 6.52; N, 8.18.

(*R**)-2-((*S**)-5,5-*Bis*(4-fluorophenyl)-3-methyl-2-oxooxazolidin-4yl)-*N*-methylpropanamide (**threo-12i**). White solid (23 mg, 25%); *R*_f 0.5 (ethyl acetate); mp 231–232 °C; IR (ATR) 3316, 1744, 1665, 1655, 1603, 1566, 1508, 995, 947, 903, 849, 843, 826, 806, 773, 754, 694, 677 cm⁻¹; ¹H NMR (CDCl₃) δ 0.83 (d, 3H, *J* = 7.3 Hz), 2.63 (d, 3H, *J* = 4.9 Hz), 2.69–2.76 (m, 1H), 2.88 (s, 3H), 5.03 (d, 1H, *J* = 5.2 Hz), 5.50 (brs, 1H), 6.93–6.99 (m, 2H), 7.04–7.10 (m, 2H), 7.38– 7.43 (m, 2H), 7.61–7.66 (m, 2H); ¹³C NMR (CDCl₃) δ 10.5 (q), 26.6 (q), 30.1 (q), 40.3 (d), 67.0 (d), 86.4 (s), 114.7 (d, *J*_{CCCF} = 21.6 Hz), 115.6 (d, *J*_{CCF} = 21.6 Hz), 127.4 (d, *J*_{CCCF} = 8.4 Hz), 129.4 (d, *J*_{CCCF} = 8.4 Hz), 133.6 (s, *J*_{CCCCF} = 2.7 Hz), 139.5 (s, *J*_{CCCCF} = 2.7 Hz), 156.5 (s), 162.1 (s, *J*_{CF} = 248.3 Hz), 162.5 (s, *J*_{CF} = 248.0 Hz), 172.6 (s). Anal. Calcd for C₂₀H₂₀F₂N₂O₃: C, 64.16; H, 5.38; N, 7.48. Found: C, 64.02; H, 5.42; N, 7.39.

(*R**)-2-((S*)-5,5-*B*is(4-methoxyphenyl)-3-methyl-2-oxooxazolidin-4-yl)-*N*-methylpropanamide (**threo-12**j). Colorless paste (28 mg, 28%); *R*_f 0.35 (ethyl acetate); IR (ATR) 3321, 1742, 1649, 1609, 1580, 1541, 1508, 989, 905, 826, 789, 773, 756, 727, 677 cm⁻¹; ¹H NMR (CDCl₃) δ 0.81 (d, 3H, *J* = 7.0 Hz), 2.63 (d, 3H, *J* = 4.6 Hz), 2.65–2.71 (m, 1H), 2.88 (s, 3H), 3.76 (s, 3H), 3.80 (s, 3H), 4.85 (d, 1H, *J* = 5.9 Hz), 5.58 (brs, 1H), 6.76–6.81 (m, 2H), 6.87–6.92 (m, 2H), 7.29–7.34 (m, 2H), 7.51–7.56(m, 2H); ¹³C NMR (CDCl₃) δ 11.8 (q), 26.5 (q), 30.6 (q), 40.9 (d), 55.2 (q), 55.3 (q), 67.5 (d), 87.2 (s), 113.0 (d), 113.8 (d), 126.9 (d), 128.8 (d), 130.3 (s), 135.7 (s), 157.1 (s), 159.0 (s), 159.4 (s), 173.1 (s); HRMS (ESI, ion trap) calcd for C₂₂H₂₇N₂O₅ (M + H⁺) 399.1920; found 399.1918.

(*R**)-2-Fluoro-*N*-methyl-2-((*R**)-3-methyl-2-oxo-5,5-diphenyloxazolidin-4-yl)acetamide (erythro-12k). White solid (74 mg, 87%); *R*_f 0.45 (hexanes-ethyl acetate, 1:5); mp 203–204 °C; IR (ATR) 3312, 1775, 1763, 1717, 1672, 1655, 1551, 1483, 951, 910, 899, 851, 775, 768, 752, 719, 700, 675, 658 cm⁻¹; ¹H NMR (CDCl₃) δ 2.34 (d, 3H, *J* = 5.2 Hz), 2.97 (s, 3H), 5.07 (dd, 1H, *J* = 2.2 Hz, *J*_{HF} = 28.2 Hz), 5.15 (dd, 1H, *J* = 2.2 Hz, *J*_{HF} = 11.5 Hz), 5.21 (brs, 1H), 7.19–7.29 (m, 3H), 7.33–7.46 (m, 5H), 7.63–7.66 (m, 2H); ¹³C NMR (CDCl₃) δ 26.2 (q), 28.9 (q), 65.8 (d, J_{CCF} = 16.8 Hz), 85.8 (s), 86.6 (d, J_{CF} = 201.5 Hz), 125.7 (d), 127.5 (d), 128.0 (d), 128.3 (d), 128.6 (d), 136.6 (s), 142.5 (s), 156.5 (s), 166.8 (s, J_{CCF} = 16.8 Hz). Anal. Calcd for C₁₉H₁₉FN₂O₃: C,66.66; H, 5.59; N, 8.18. Found: C, 66.65; H, 5.61; N, 8.13.

(*R**)-2-((*R**)-5,5-*B*is(4-methoxyphenyl)-3-methyl-2-oxooxazolidin-4-yl)-2-fluoro-*N*-methylacetamide (erythro-12m). White solid (93 mg, 92%); *R*_f 0.5 (ethyl acetate); mp 197–199 °C; IR (ATR) 3545, 3368, 1732, 1674, 1609, 1557, 1510, 999, 964, 955, 928, 897, 853, 824, 799, 770, 758, 729, 694, 667 cm⁻¹; ¹H NMR (CDCl₃) δ 2.39 (d, 3H, *J* = 5.0 Hz), 2.96 (s, 3H), 3.76 (s, 3H), 3.80 (s, 3H), 5.02 (dd, 1H, *J* = 2.0 Hz, *J*_{HF} = 6.2 Hz), 5.10 (dd, 1H, *J* = 2.0 Hz, *J*_{HF} = 22.5 Hz), 5.33 (brs, 1H), 6.73–6.79 (m, 2H), 6.88–6.93 (m, 2H), 7.24–7.33 (m, 2H), 7.50–7.55 (m, 2H); ¹³C NMR (CDCl₃) δ 26.1 (q), 29.0 (q), 55.2 (q), 55.3 (q), 66.1 (d, *J*_{CCF} = 16.8 Hz), 85.6 (s), 86.7 (d, *J* = 201.5 Hz), 112.7 (d), 113.0 (d), 127.1 (d), 129.2 (s), 129.8 (d), 134.8 (s), 156.6 (s), 159.1 (s), 159.5 (s), 166.9 (s, *J*_{CCF} = 16.8 Hz). Anal. Calcd for C₂₁H₂₃FN₂O₅: C,62.68; H, 5.76; N, 6.96. Found: C, 62.77; H, 5.79; N, 6.85.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00670.

X-ray crystallographic data of 3g (CIF) X-ray crystallographic data of *trans*-3h (CIF) X-ray crystallographic data of 8e (CIF) X-ray crystallographic data of *cis*-8h (CIF) X-ray crystallographic data of *cis*-8i (CIF) X-ray crystallographic data of 11b (CIF) X-ray crystallographic data of 11d (CIF) X-ray crystallographic data of *trans*-11h (CIF) X-ray crystallographic data of *cis*-11i (CIF) X-ray crystallographic data of *cis*-11j' (CIF) X-ray crystallographic data of *trans-11j* (CIF) X-ray crystallographic data of *cis*-11n (CIF) X-ray crystallographic data of 12b (CIF) X-ray crystallographic data of 12c (CIF) X-ray crystallographic data of 12e (CIF) X-ray crystallographic data of threo-12h (CIF) X-ray crystallographic data of *threo-12k* (CIF) X-ray crystallographic data of *erythro*-12k (CIF) X-ray crystallographic data of *threo-12l* (CIF) X-ray crystallographic data of *threo-12n* (CIF) X-ray crystallographic data of erythro-13e (CIF) X-ray crystallographic data of *trans-erythro*-13f (CIF) X-ray crystallographic data of *cis-threo-13g* (CIF) X-ray crystallographic data of *trans-threo-13g* (CIF) X-ray crystallographic data of *cis-erythro-13h* (CIF) X-ray crystallographic data of trans-15i (CIF) X-ray crystallographic data of *trans*-15j (CIF) ¹H and ¹³C NMR spectra of new compounds, X-ray crystallographic data (ORTEP) of 3g, trans-3h, 8e, cis-8h, cis-8i, 11b, 11d, trans-11h, cis-11i, cis-11j', trans-11j, cis-11n, 12b, 12c, 12e, threo-12h, threo-12k, erythro-12k, threo-12l, threo-12n, erythro-13e, trans-erythro-13f, cisthreo-13g, trans-threo-13g, cis-erythro-13h, trans-15i, and trans-15j, and DFT calculation data (PDF)

AUTHOR INFORMATION

Corresponding Author *E-mail: kise@bio.tottori-u.ac.jp.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Brunton, L.; Chabner, B.; Knollman, B. Goodman and Gilman's The Pharmacological Basis of Therapeutics; McGraw-Hill: New York, 2010.

(2) For recent reports on pharmaceutically active uracils, see: (a) Kalman, T. I.; Lai, L. Nucleosides, Nucleotides Nucleic Acids 2005, 24, 367. (b) Embrey, M. W.; Wai, J. S.; Funk, T. W.; Homnick, C. F.; Perlow, D. S.; Young, S. D.; Vacca, J. P.; Hazuda, D. J.; Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.; Schleif, W. A.; Gabryelski, L. J.; Jin, L.; Chen, I. W.; Ellis, J. D.; Wong, B. K.; Lin, J. H.; Leonard, Y. M.; Tsou, N. N.; Zhuang, L. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4550. (c) Butini, S.; Pickering, D. S.; Morelli, E.; Coccone, S. S.; Trotta, F.; De Angelis, M.; Guarino, E.; Fiorini, I.; Campiani, G.; Novellino, E.; Schousboe, A.; Christensen, J. K.; Gemma, S. J. Med. Chem. 2008, *51*, 6614. (d) Liu, Y.; Lim, B. H.; Jiang, W. W.; Flentge, C. A.; Hutchinson, D. K.; Madigan, D. L.; Randolph, J. T.; Wagner, R.; Maring, C. J.; Kati, W. M.; Molla, A. *Bioorg. Med. Chem. Lett.* 2012, *22*, 3747.

(3) For recent reviews on the synthesis of substituted uracils, see: (a) Novikov, M. S.; Geisman, A. N. *Chem. Heterocycl. Compd.* **2014**, *49*, 1426. (b) Pałasz, A.; Cież, D. *Eur. J. Med. Chem.* **2015**, *97*, 582.

(4) For recent reports on the synthesis of 5- and 6-substituted uracils, see: (a) Kianmehr, E.; Torabi, M.; Khalkhali, M. R.; Faghih, N.; Khan, K. M. *Eur. J. Org. Chem.* **2015**, 2015, 2796. (b) Saftić, D.; Vianello, R.; Žinić, B. *Eur. J. Org. Chem.* **2015**, 2015, 7695. (c) Perrone, S.; Capua, M.; Salomone, A.; Troisi, L. *J. Org. Chem.* **2015**, 80, 8189. (d) Pałasz, A.; Cież, D.; Musielak, B.; Kalinowska-Thuścik, J. *Tetrahedron* **2015**, 71, 8911. (e) Úr, G.; Kálai, T.; Hideg, K. *Tetrahedron Lett.* **2016**, 57, 778 and references cited therein.

(5) Kise, N.; Akazai, S.; Sakurai, T. *Tetrahedron Lett.* 2011, *52*, 6627.
(6) Kise, N.; Miyamoto, H.; Hamada, Y.; Sakurai, T. *Tetrahedron Lett.* 2015, *56*, 4599.

(7) For the first report on the electroreductive cross-coupling of carbonyl compounds in the presence of TMSCl, see: (a) Shono, T.; Ohmizu, H.; Kawakami, S.; Sugiyama, H. *Tetrahedron Lett.* **1980**, *21*, 5029. For our recent reports on this theme, see: (b) Kise, N.; Isemoto, S.; Sakurai, T. Org. Lett. **2009**, *11*, 4902. (c) Kise, N.; Sakurai, T. *Tetrahedron Lett.* **2010**, *51*, 70. (d) Kise, N.; Isemoto, S.; Sakurai, T. J. Org. Chem. **2011**, *76*, 9856. (e) Kise, N.; Isemoto, S.; Sakurai, T. *Tetrahedron* **2012**, *68*, 8805. (f) Kise, N.; Isemoto, S.; Sakurai, T. *Tetrahedron* **2012**, *68*, 8805. (f) Kise, N.; Isemoto, Y.; Sakurai, T. *Tetrahedron* **Lett. 2013**, *15*, 2746. (g) Kise, N.; Inoue, Y.; Sakurai, T. *Tetrahedron* Lett. **2013**, *54*, 3281. (h) Kise, N.; Hamada, Y.; Sakurai, T. Org. Lett. **2014**, *16*, 3348.